TechMet

Premium Indexable Cutting Tools

North America's #1 Supplier of Carbide Tool Blanks

Since 1998 TechMet Carbides has supplied premium carbide tool blanks for production of high performance cutting tools throughout North America. Our extensive range of carbides are used by leading manufacturers to produce all types of solid carbide endmills and drills, carbide burrs, carbide-tipped saws and custom carbide inserts.

Our dedication to Quality, Performance and Value has made us the #1 Supplier of performance Carbide Tool Blanks in North America. Our carbide has been used for hundreds of millions of cutting tools – tools that are already in your shop, running on your machines.

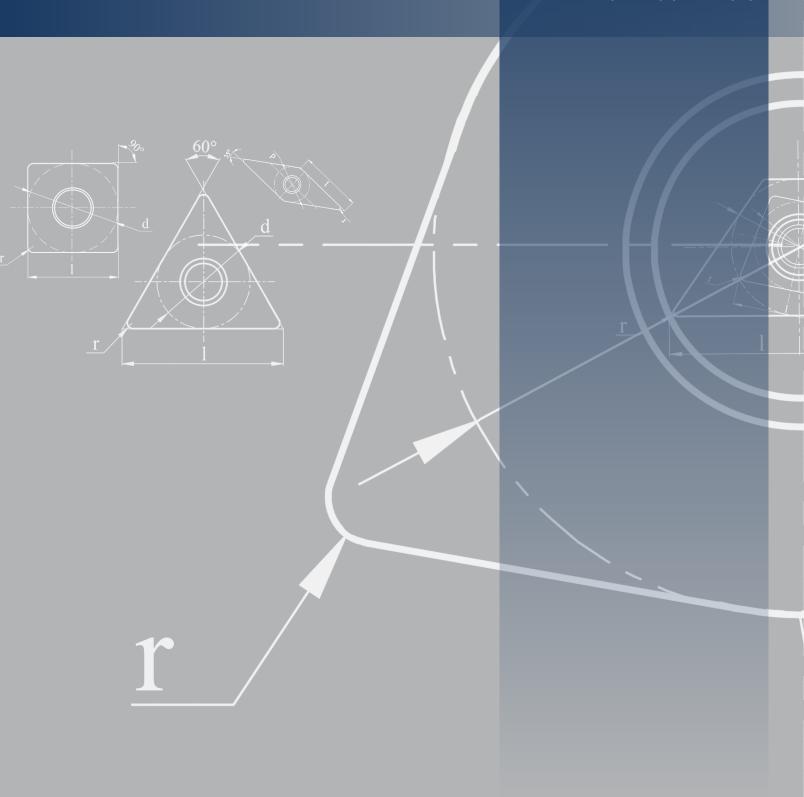
TechMet Premium Indexable Tooling

TechMet has now brought our extensive carbide knowledge and experience to indexable cutting tools. We are proud to introduce an optimized range of advanced insert technology - incorporating premium carbide substrates and advanced geometry chipbreaker designs with custom performance coatings. We offer a full range of indexable insert solutions to give metalcutting shops a strong competitive advantage. TechMet's bedrock principles of Quality, Performance and Value are built into every tool.

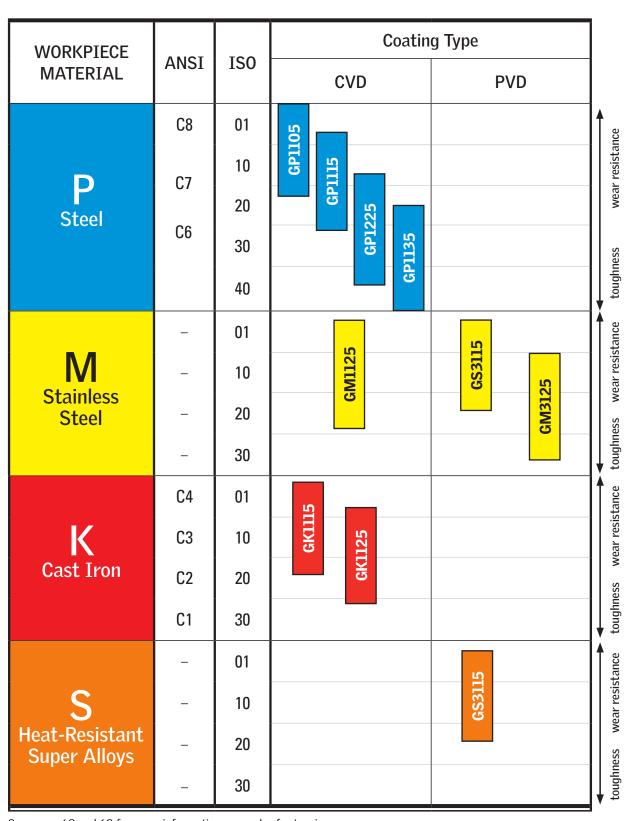
The TechMet Commitment to metalworking professionals will always be

- ✓ Premium Performance with Consistent Quality
- ✓ Outstanding Service and Support
- ✓ Inventory Security with Same-Day Shipping
- ✓ The Best Value for Your Production

Turning Insert Application Guide	4
Turning Inserts, Negative Rake	5
Turning Inserts, Positive Rake	33
Notch Grooving Inserts	74
Notch Threading Inserts	75
Laydown Threading Inserts	77
High Feed Milling Cutters and Inserts	86
Square Shoulder Milling Inserts	97
45° Facemilling Inserts	98
Profile Milling Inserts	99



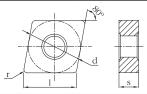
TURNING INSERT APPLICATION GUIDE


Insert Shape	Application Conditions (+)	Considerations (-)
90° - Square	 Very strong 90° corner with excellent economy (8 edges on double-sided inserts). Most often used for rough facing operations – especially on castings, forgings and rough-sawed blanks. 	 Unable to turn or face up to a shoulder (must be used in a toolholder with minimum 5° lead angle). High radial forces push against the workpiece when used for turning. Should always be used in a stable set-up.
c - 80° Diamond	 The most popular insert shape due to high versatility. Strong cutting edge with secure seating in the insert pocket. 80° corner can be used for both turning and facing operations. Opposite 100° corners can be used for general roughing applications (especially facing), providing maximum economy of 8 total cutting edges. 	With only 5° of clearance between the trailing side of the insert and the workpiece, chip jamming can occur when boring.
W - 80° Corner Trigon	 Six-corner 80° diamond shape that can increase economy compared to CNMG-style inserts. Generally used on more moderate depths of cut and feedrates than CNMG-style inserts. 	 Seating of insert in pocket is not as stable as CNMG-style inserts. Cannot take as deep a depth of cut as similar sized CNMG-type inserts.
T - Triangle	 Very versatile insert shape – can be used for turning, facing, boring, copy turning and basic profiling. Good economy with up to 6 cutting edges. Excellent choice for general boring due to very stable seating of the insert in the boring bar pocket, and extra side clearance between the insert and the workpiece bore (greatly reducing the risk of chip jamming). 	 Edge is measurably weaker than 80° diamond shaped inserts. Be sure not to use a triangle insert that is "too large" for the application, as the cost per edge can increase. For example, a 3/8" iC (Inscribed Circle) triangle insert (TNMG-33x) can manage up to .375" depth of cut in most situations with nearly the same insert strength – but a much lower cost - than a 1/2" iC triangle insert (TNMG-43x).
D - 55° Diamond	 Generally the first choice for profile / copy turning applications. Able to "In-Copy" (plunge turn into a smaller diameter) at an angle of 30°. Commonly used when machining close to the tailstock / live center. 	 Somewhat weaker edge strength than a triangle insert. Cost per edge is higher than most other turning inserts (except 35° diamond shape).
V - 35° Diamond	 First choice for intricate shape copy turning. Can "In-Copy" (plunge turn into a smaller diameter) at an angle up to 49°. Can work extremely close to the tailstock / live center. 	 The weakest turning insert shape / corner – depths of cut and feedrates must be lighter. Highest cost per edge. Negative style (VNMG) should mainly be used for external applications. Positive style (VCMT) can be used for external and internal applications, and in many cases improved performance outweighs the increased cost per edge (2 edges vs. the 4 edges of a negative 35° diamond VNMG).

TURNING INSERTS | NEGATIVE RAKE

ANSI / ISO STANDARD INSERTS FOR MOST EXTERNAL TURNING AND INTERNAL MACHINING OPERATIONS

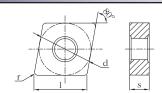
See pages 68 and 69 for more information on grades for turning.

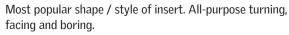

CHIPBREAKERS | NEGATIVE RAKE INSERTS

Chipbreaker	Description	Chipbreaker Range	Design
QF P STEEL	 Butterfly geometry directs chip flow Variable Rake Angle Curved Edgeline Excellent chip control at small depths of cut High quality surface finish 	QF QF QF QF QF QF QF QF QF QF	.005
SV P STEEL	 Super-wide Chipgroove High positive cutting action Unique cutting edge treatment Extremely long edgeline Good for unstable set-ups Able to handle varying depths of cut 	SV .200 .200 .156 .125 .080 .040 .008 .016 .024 f _n (inch)	150
QM P STEEL	 Smooth chip formation Variable Land balances sharpness & strength Strengthening ribs extend tool life Wide application range Low cutting forces with high edge strength Excellent all-around performance 	QM QM QM QM QM QM QM QM QM QM	.008
QR P STEEL	High performance steel roughing chipbreaker Strong cutting edge Well suited for unstable application conditions First choice for medium to heavy interruptions Excellent chip evacuation and chip control Smooth chip removal throughout feed range	QR Q	200 012
SF M STAINLESS STEEL	Ultra-sharp cutting edge Low cutting forces Excellent chip control at small depths of cut Top land design protects against edge hammering Smooth cutting action without burrs Excellent workpiece surface finish	SF S	18°
SM M STAINLESS STEEL	 Double-positive chipbreaker design Strengthened positive land Micro-edge geometry for Stainless Steel Reduced workhardening effect Wide application range / medium turning 	SM S	003
UK K CAST IRON	 Lower cutting force geometry for Cast Iron Strengthened edgeline with open chipformer Designed for light to moderate applications Good choice in unstable set-ups Problem solver for boring Cast Iron 	200 .006 .016 .024 f _n (inch)	160 012
HK K CAST IRON	 Outstanding performance in Cast Iron Strong edge with free cutting action Extremely broad application range Replaces traditional – NMA flat-top inserts Precision lapped support surface 	.200 .156 .125 .080 .040 .008 .016 .024 f _n (inch)	.015

CNMG-QF

Most popular shape / style of insert. All-purpose turning, facing and boring.


QF: First Choice Geometry for finishing and semifinishing applications in all types of Steel.


CATALOG	160	DIM	IENSI(ONS (I	NCH)	CUTTING D	STEEL				
NUMBER	ISO DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	
CNMG 321-QF	CNMG 090304-QF	3/8	.381	1/8	1/64	.010062	.003010		*	*	
CNMG 322-QF	CNMG 090308-QF	3/8	.381	1/8	1/32	.016080	.004014		*	*	
CNMG 431-QF	CNMG 120404-QF	1/2	.508	3/16	1/64	.010062	.003010	*	*	*	
CNMG 432-QF	CNMG 120408-QF	1/2	.508	3/16	1/32	.016080	.004014	*	*	*	

Ordering Example: 20 pcs CNMG 432-QF GP1225

CNMG-SV

SV: Sharp Edge Geometry for shaft turning, boring and unstable workpieces. Performs well in a wide range of depths of cut.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	STEEL				
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1225			
CNMG 432R-SV	CNMG 120408R-SV	1/2	.508	3/16	1/32	.031187	.006016	*			
CNMG 432L-SV	CNMG 120408L-SV	1/2	.508	3/16	1/32	.031187	.006016	*			

Ordering Example: 20 pcs CNMG 432L-SV GP1225

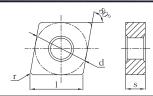
NOTE: SV geometry inserts are available in both R (Right-hand) and L (Left-hand) styles. Right-hand style is shown above. Normal External Turning applications require Right-hand (R) inserts in Right-hand holders, and Left-hand (L) inserts in Left-hand holders. For Internal / Boring applications, Left-hand (L) inserts are used in Right-hand bars, and Right-hand (R) inserts are used in Left-hand bars.

REF	ERENCE	PAGES
-----	--------	--------------

GRADE SELECTION GUIDE

6

TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

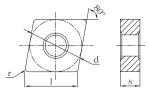
CNMG-QM

Most popular shape / style of insert. All-purpose turning, facing and boring.

QM: First Choice Geometry for medium to semi-roughing applications in all types of Steel.

CATALOG	IS0	DIM	ENSI	NS (I	NCH)	CUTTING D	ATA (INCH)		STI	EEL	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	
CNMG 321-QM	CNMG 090304-QM	3/8	.381	1/8	1/64	.016141	.005014		*	*	
CNMG 322-QM	CNMG 090308-QM	3/8	.381	1/8	1/32	.020141	.006016		*	*	
CNMG 431-QM	CNMG 120404-QM	1/2	.508	3/16	1/64	.016187	.005014	*	*	*	
CNMG 432-QM	CNMG 120408-QM	1/2	.508	3/16	1/32	.020187	.006016	*	*	*	
CNMG 433-QM	CNMG 120412-QM	1/2	.508	3/16	3/64	.031187	.007018	*	*	*	
CNMG 434-QM	CNMG 120416-QM	1/2	.508	3/16	1/16	.040187	.008020			*	
CNMG 542-QM	CNMG 160608-QM	5/8	.635	1/4	1/32	.020219	.006016	*	*	*	
CNMG 543-QM	CNMG 160612-QM	5/8	.635	1/4	3/64	.031219	.007018	*	*	*	
CNMG 642-QM	CNMG 190608-QM	3/4	.762	1/4	1/32	.020266	.006016		*	*	
CNMG 643-QM	CNMG 190612-QM	3/4	.762	1/4	3/64	.031266	.007018	*	*	*	
CNMG 644-QM	CNMG 190616-QM	3/4	.762	1/4	1/16	.040266	.008020			*	

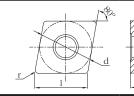
Ordering Example: 20 pcs CNMG 644-QM GP1225

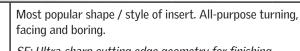

REFERENCE PAGES

GRADE SELECTION GUIDE 6 TECHNICAL INFORMATION 59 CUTTING SPEED RECOMMENDATIONS 66

CNMG-QR

Most popular shape / style of insert. All-purpose turning, facing and boring.


QR: Strong cutting edge geometry for roughing applications in all types of Steel. Well suited for unstable conditions and interrupted cuts.


CATALOC	100	DIM	IENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	STEEL			
CATALOG NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	GP1135
CNMG 432-QR	CNMG 120408-QR	1/2	.508	3/16	1/32	.028219	.007020	*	*	*	*
CNMG 433-QR	CNMG 120412-QR	1/2	.508	3/16	3/64	.040219	.008022	*	*	*	*
CNMG 543-QR	CNMG 160612-QR	5/8	.635	1/4	3/64	.040266	.008022	*	*	*	*
CNMG 544-QR	CNMG 160616-QR	5/8	.635	1/4	1/16	.055266	.009026	*	*		*
CNMG 643-QR	CNMG 190612-QR	3/4	.762	1/4	3/64	.040328	.008022	*	*	*	*
CNMG 644-QR	CNMG 190616-QR	3/4	.762	1/4	1/16	.055328	.009026	*	*		*

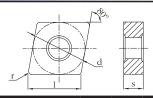
Ordering Example: 20 pcs CNMG 644-QR GP1135

CNMG-SF

SF: Ultra-sharp cutting edge geometry for finishing in Stainless Steels. Low cutting forces and superior workpiece surface finish without burrs.

CATALOG	IS0	DIM	IENSI	ONS (I	NCH)	CUTTING D	STAINLESS STEEL				
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GS3115			
CNMG 431-SF	CNMG 120404-SF	1/2	.508	3/16	1/64	.004060	.002012	*			
CNMG 432-SF	CNMG 120408-SF	1/2	.508	3/16	1/32	.004060	.002012	*			

Ordering Example: 20 pcs CNMG 432-SF GS3115


NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GS3115 is also suitable for use with iron-based, cobalt-based and nickel-based Heat Resistant Super Alloys.

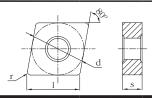
REFERENCE PAGES						
	GRADE SELECTION GUIDE	6	TECHNICAL INFORMATION	59	CUTTING SPEED RECOMMENDATIONS	66

CNMG-SM

Most popular shape / style of insert. All-purpose turning, facing and boring.

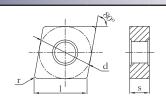
SM: Keen edge geometry especially for Stainless Steel. Unique edgeline reduces work hardening. Semi-finishing to rough machining.

CATALOG	100	DIM	ENSI	NS (I	NCH)	CUTTING D	ATA (INCH)	ST	TAINLE:	SS STE	EL
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GM1125	GM3125		
CNMG 321-SM	CNMG 090304-SM	3/8	.381	1/8	1/64	.016125	.006011	*	*		
CNMG 322-SM	CNMG 090308-SM	3/8	.381	1/8	1/32	.020125	.006012	*	*		
CNMG 431-SM	CNMG 120404-SM	1/2	.508	3/16	1/64	.016156	.006011	*	*		
CNMG 432-SM	CNMG 120408-SM	1/2	.508	3/16	1/32	.020156	.006012	*	*		
CNMG 433-SM	CNMG 120412-SM	1/2	.508	3/16	3/64	.031156	.007013	*	*		
CNMG 434-SM	CNMG 120416-SM	1/2	.508	3/16	1/16	.040156	.008014	*	*		
CNMG 542-SM	CNMG 160608-SM	5/8	.635	1/4	1/32	.020187	.006012	*	*		
CNMG 543-SM	CNMG 160612-SM	5/8	.635	1/4	3/64	.031187	.007013	*	*		
CNMG 544-SM	CNMG 160616-SM	5/8	.635	1/4	1/16	.040187	.008014	*	*		
CNMG 642-SM	CNMG 190608-SM	3/4	.762	1/4	1/32	.020234	.006012	*	*		
CNMG 643-SM	CNMG 190612-SM	3/4	.762	1/4	3/64	.031234	.007013	*	*		
CNMG 644-SM	CNMG 190616-SM	3/4	.762	1/4	1/16	.040234	.008014	*	*		


Ordering Example: 20 pcs CNMG 644-SM GM1125

CNMG-UK

Most popular shape / style of insert. All-purpose turning, facing and boring.


UK: Lower cutting force geometry for Cast Iron. Edge geometry reduces cutting forces in moderate conditions / lighter cuts.

CATALOG	IS0	DIM	IENSI(ONS (I	NCH)	CUTTING D	CAST IRON				
NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GK1115	GK1125		
CNMG 431-UK	CNMG 120404-UK	1/2	.508	3/16	1/64	.012203	.003012	*	*		
CNMG 432-UK	CNMG 120408-UK	1/2	.508	3/16	1/32	.016203	.004014	*	*		

Ordering Example: 20 pcs CNMG 432-UK GK1115

CNMG-HK

Most popular shape / style of insert. All-purpose turning, facing and boring.

HK: Exceptionally broad application range geometry primarily for Cast Iron. Strong cutting edge, excellent durability. Semi-finishing to roughing.

CATALOG	100	DIM	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)		CAST	IRON	
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GK1115	GK1125		
CNMG 432-HK	CNMG 120408-HK	1/2	.508	3/16	1/32	.020219	.004016	*	*		
CNMG 433-HK	CNMG 120412-HK	1/2	.508	3/16	3/64	.031219	.006020	*	*		
CNMG 543-HK	CNMG 160612-HK	5/8	.635	1/4	3/64	.031297	.006020	*	*		
CNMG 544-HK	CNMG 160616-HK	5/8	.635	1/4	1/16	.040297	.008026		*		
CNMG 643-HK	CNMG 190612-HK	3/4	.762	1/4	3/64	.031359	.006020	*	*		
CNMG 644-HK	CNMG 190616-HK	3/4	.762	1/4	1/16	.040359	.008026		*		

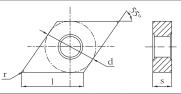
Ordering Example: 20 pcs CNMG 644-HK GK1125

REFERENCE PAGES

GRADE SELECTION GUIDE

6

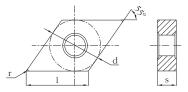
TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

DNMG-QF

Use for profile turning, copy turning, and semi-finishing. Can turn more complex shapes due to 55° included angle.


QF: First Choice Geometry for finishing and semifinishing applications in all types of Steel.

CATALOG	IS0	DIMENSIONS (INCH)				CUTTING D	STEEL				
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	
DNMG 331-QF	DNMG 110404-QF	3/8	.458	3/16	1/64	.010062	.003010		*	*	
DNMG 332-QF	DNMG 110408-QF	3/8	.458	3/16	1/32	.016080	.004014		*	*	
DNMG 431-QF	DNMG 150404-QF	1/2	.610	3/16	1/64	.010062	.003010	*	*	*	
DNMG 432-QF	DNMG 150408-QF	1/2	.610	3/16	1/32	.016080	.004014	*	*	*	

Ordering Example: 20 pcs DNMG 432-QF GP1115

DNMG-QM

Use for profile turning, copy turning, and semi-finishing. Can turn more complex shapes due to 55° included angle.

QM: First Choice Geometry for medium to semi-roughing applications in all types of Steel.

CATALOG	100	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	STEEL				
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225		
DNMG 331-QM	DNMG 110404-QM	3/8	.458	3/16	1/64	.016156	.005014		*	*		
DNMG 332-QM	DNMG 110408-QM	3/8	.458	3/16	1/32	.020156	.006016		*	*		
DNMG 333-QM	DNMG 110412-QM	3/8	.458	3/16	3/64	.031156	.007018		*	*		
DNMG 431-QM	DNMG 150404-QM	1/2	.610	3/16	1/64	.016187	.005014	*	*	*		
DNMG 432-QM	DNMG 150408-QM	1/2	.610	3/16	1/32	.020187	.006016	*	*	*		
DNMG 433-QM	DNMG 150412-QM	1/2	.610	3/16	3/64	.031187	.007018		*	*		

Ordering Example: 20 pcs DNMG 433-QM GP1115

REFERENCE PAGES

GRADE SELECTION GUIDE

6

TECHNICAL INFORMATION

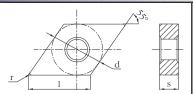
59

CUTTING SPEED RECOMMENDATIONS

DNMG-SF

Use for profile turning, copy turning, and semi-finishing. Can turn more complex shapes due to 55° included angle.

SF: Ultra-sharp cutting edge geometry for finishing in Stainless Steels. Low cutting forces and superior workpiece surface finish without burrs.


CATALOG	ATALOG ISO	DIMENSIONS (INCH)				CUTTING D	ATA (INCH)	STAINLESS STEEL			
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GS3115			
DNMG 431-SF	DNMG 150404-SF	1/2	.610	3/16	1/64	.004060	.002012	*			
DNMG 432-SF	DNMG 150408-SF	1/2	.610	3/16	1/32	.004060	.002012	*			

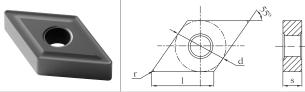
Ordering Example: 20 pcs DNMG 432-SF GS3115

NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GS3115 is also suitable for use with ironbased, cobalt-based and nickel-based Heat Resistant Super Alloys.

DNMG-SM

Use for profile turning, copy turning, and semi-finishing. Can turn more complex shapes due to 55° included angle.

SM: Keen edge geometry especially for Stainless Steel. Unique edgeline reduces work hardening. Semi-finishing to rough machining.

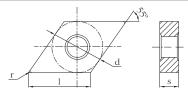

CATALOG	100	DIMENSIONS (INCH)				CUTTING D	OATA (INCH)	STAINLESS STEEL			
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GM1125	GM3125		
DNMG 331-SM	DNMG 110404-SM	3/8	.458	3/16	1/64	.016141	.006011	*			
DNMG 332-SM	DNMG 110408-SM	3/8	.458	3/16	1/32	.020141	.006012	*	*		
DNMG 333-SM	DNMG 110412-SM	3/8	.458	3/16	3/64	.031141	.007013	*	*		
DNMG 431-SM	DNMG 150404-SM	1/2	.610	3/16	1/64	.016172	.006011	*	*		
DNMG 432-SM	DNMG 150408-SM	1/2	.610	3/16	1/32	.020172	.006012	*	*		
DNMG 433-SM	DNMG 150412-SM	1/2	.610	3/16	3/64	.031172	.007013	*	*		

Ordering Example: 20 pcs DNMG 433-SM GM1125

		REFERENCE PA	GES		
GRADE SELECTION GUIDE	6	TECHNICAL INFORMATION	59	CUTTING SPEED RECOMMENDATIONS	66

DNMG-UK

Use for profile turning, copy turning, and semi-finishing. Can turn more complex shapes due to 55° included angle.


UK: Lower cutting force geometry for Cast Iron. Edge geometry reduces cutting forces in moderate conditions / lighter cuts.

CATALOG	IS0	DIMENSIONS (INCH)				CUTTING D	ATA (INCH)	CAST IRON				
NUMBER	DESIGNATION	d	_	S	r	depth of cut, a _p	feed per rev, f _n	GK1115	GK1125			
DNMG 431-UK	DNMG 150404-UK	1/2	.610	3/16	1/64	.012203	.003012	*	*			
DNMG 432-UK	DNMG 150408-UK	1/2	.610	3/16	1/32	.016203	.004014	*	*			

Ordering Example: 20 pcs DNMG 432-UK GK1115

DNMG-HK

Use for profile turning, copy turning, and semi-finishing. Can turn more complex shapes due to 55° included angle.

HK: Exceptionally broad application range geometry primarily for Cast Iron. Strong cutting edge, excellent durability. Semi-finishing to roughing.

CATALOG	IS0	DIM	IENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	CAST IRON			
NUMBER	DESIGNATION	d	1	S	r	depth of cut, a _p	feed per rev, f _n	GK1115	GK1125		
DNMG 432-HK	DNMG 150408-HK	1/2	.610	3/16	1/32	.020219	.004016	*	*		
DNMG 433-HK	DNMG 150412-HK	1/2	.610	3/16	3/64	.031219	.006020	*	*		

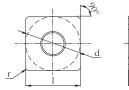
Ordering Example: 20 pcs DNMG 433-HK GK1115

REFERENCE PAGES

GRADE SELECTION GUIDE

6

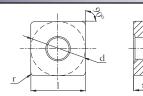
TECHNICAL INFORMATION

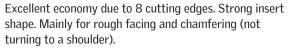

59

CUTTING SPEED RECOMMENDATIONS

SNMG-QF

Excellent economy due to 8 cutting edges. Strong insert shape. Mainly for rough facing and chamfering (not turning to a shoulder).


QF: First Choice Geometry for finishing and semifinishing applications in all types of Steel.


CATALOG	IS0	DIN	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	STEEL				
NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225		
SNMG 321-QF	SNMG 090304-QF	3/8	.375	1/8	1/64	.010062	.003010		*	*		
SNMG 322-QF	SNMG 090308-QF	3/8	.375	1/8	1/32	.016080	.004014		*	*		
SNMG 431-QF	SNMG 120404-QF	1/2	.500	3/16	1/64	.010062	.003010	*	*	*		
SNMG 432-QF	SNMG 120408-QF	1/2	.500	3/16	1/32	.016080	.004014	*	*	*		

Ordering Example: 20 pcs SNMG 432-QF GP1105

SNMG-SV

SV: Sharp Edge Geometry for turning and facing unstable workpieces. Can handle a wide range of depths of cut.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)		STI	EEL	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1225			
SNMG 432R-SV	SNMG 120408R-SV	1/2	.500	3/16	1/32	.031187	.006016	*			
SNMG 432L-SV	SNMG 120408L-SV	1/2	.500	3/16	1/32	.031187	.006016	*			

Ordering Example: 20 pcs SNMG 432L-SV GP1225

NOTE: SV geometry inserts are available in both R (Right-hand) and L (left-hand) styles. Right-hand style is shown above.

Normal External Turning applications require Right-hand (R) inserts in Right-hand holders, and Left-hand (L) inserts in Left-hand holders.

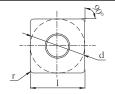
For Internal / Boring applications, Left-hand (L) inserts are used in Right-hand bars, and Right-hand (R) inserts are used in Left-hand bars.

REF	ERENCE	PAGES
-----	--------	--------------

GRADE SELECTION GUIDE

6

TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

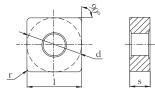
SNMG-QM

Excellent economy due to 8 cutting edges. Strong insert shape. Mainly for rough facing and chamfering (not turning to a shoulder).

QM: First Choice Geometry for medium to semi-roughing applications in all types of Steel.

CATALOC	160	DIM	IENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)		STE	EEL	
CATALOG NUMBER	ISO DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	
SNMG 321-QM	SNMG 090304-QM	3/8	.375	1/8	1/64	.016141	.005014		*	*	
SNMG 322-QM	SNMG 090308-QM	3/8	.375	1/8	1/32	.020141	.006016		*	*	
SNMG 431-QM	SNMG 120404-QM	1/2	.500	3/16	1/64	.016187	.005014		*	*	
SNMG 432-QM	SNMG 120408-QM	1/2	.500	3/16	1/32	.020187	.006016	*	*	*	
SNMG 433-QM	SNMG 120412-QM	1/2	.500	3/16	3/64	.031187	.007018	*	*	*	
SNMG 434-QM	SNMG 120416-QM	1/2	.500	3/16	1/16	.040187	.008020			*	
SNMG 542-QM	SNMG 150608-QM	5/8	.625	1/4	1/32	.020219	.006016		*	*	
SNMG 543-QM	SNMG 150612-QM	5/8	.625	1/4	3/64	.031219	.007018	*	*	*	
SNMG 643-QM	SNMG 190612-QM	3/4	.750	1/4	3/64	.031266	.007018	*	*	*	

Ordering Example: 20 pcs SNMG 643-QM GP1115


REFERENCE PAGES

GRADE SELECTION GUIDE 6 TECHNICAL INFORMATION 59 CUTTING SPEED RECOMMENDATIONS

SNMG-QR

Excellent economy due to 8 cutting edges. Strong insert shape. Mainly for rough facing and chamfering (not turning to a shoulder).

QR: Strong cutting edge geometry for roughing applications in all types of Steel. Well suited for unstable conditions and interrupted cuts.

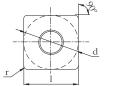
CATALOG	IS0	DIM	IENSI	NS (I	NCH)	CUTTING D	ATA (INCH)		STI	EEL	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1225	GP1135	
SNMG 432-QR	SNMG 120408-QR	1/2	.500	3/16	1/32	.028219	.007020	*	*	*	
SNMG 433-QR	SNMG 120412-QR	1/2	.500	3/16	3/64	.040219	.008022	*		*	
SNMG 543-QR	SNMG 150612-QR	5/8	.625	1/4	3/64	.040266	.008022	*	*	*	
SNMG 544-QR	SNMG 150616-QR	5/8	.625	1/4	1/16	.055266	.009026	*		*	
SNMG 643-QR	SNMG 190612-QR	3/4	.750	1/4	3/64	.040328	.008022	*	*	*	
SNMG 644-QR	SNMG 190616-QR	3/4	.750	1/4	1/16	.055328	.009026	*		*	

Ordering Example: 20 pcs SNMG 644-QR GP1135

GRADE SELECTION GUIDE

6

TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

SNMG-SM

Excellent economy due to 8 cutting edges. Strong insert shape. Mainly for rough facing and chamfering (not turning to a shoulder).

SM: Keen edge geometry especially for Stainless Steel. Unique edgeline reduces work hardening. Semi-finishing to rough machining.

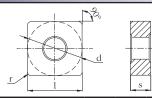
CATALOC	100	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	ST	TAINLE	SS STE	EL
CATALOG NUMBER	ISO DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GM1125	GM3125		
SNMG 321-SM	SNMG 090304-SM	3/8	.375	1/8	1/64	.016125	.006011	*	*		
SNMG 322-SM	SNMG 090308-SM	3/8	.375	1/8	1/32	.020125	.006012	*	*		
SNMG 431-SM	SNMG 120404-SM	1/2	.500	3/16	1/64	.016156	.006011	*	*		
SNMG 432-SM	SNMG 120408-SM	1/2	.500	3/16	1/32	.020156	.006012	*	*		
SNMG 433-SM	SNMG 120412-SM	1/2	.500	3/16	3/64	.031156	.007013	*	*		
SNMG 434-SM	SNMG 120416-SM	1/2	.500	3/16	1/16	.040156	.008014	*	*		
SNMG 542-SM	SNMG 150608-SM	5/8	.625	1/4	1/32	.020187	.006012	*	*		
SNMG 543-SM	SNMG 150612-SM	5/8	.625	1/4	3/64	.031187	.007013	*	*		
SNMG 544-SM	SNMG 150616-SM	5/8	.625	1/4	1/16	.040187	.008014	*	*		
SNMG 643-SM	SNMG 190612-SM	3/4	.750	1/4	3/64	.031234	.007013	*	*		
SNMG 644-SM	SNMG 190616-SM	3/4	.750	1/4	1/16	.040234	.008014	*	*		

Ordering Example: 20 pcs SNMG 644-SM GM1125

GRADE SELECTION GUIDE

6

TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

SNMG-HK

Excellent economy due to 8 cutting edges. Strong insert shape. Mainly for rough facing and chamfering (not turning to a shoulder).

HK: Exceptionally broad application range geometry primarily for Cast Iron. Strong cutting edge, excellent durability. Semi-finishing to roughing.

CATALOC	100	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)		CAST	IRON	
CATALOG NUMBER	ISO DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GK1115	GK1125		
SNMG 432-HK	SNMG 120408-HK	1/2	.500	3/16	1/32	.020219	.004016	*	*		
SNMG 433-HK	SNMG 120412-HK	1/2	.500	3/16	3/64	.031219	.006020	*	*		
SNMG 434-HK	SNMG 120416-HK	1/2	.500	3/16	1/16	.040219	.008026		*		
SNMG 543-HK	SNMG 150612-HK	5/8	.625	1/4	3/64	.031297	.006020	*	*		
SNMG 544-HK	SNMG 150616-HK	5/8	.625	1/4	1/16	.040297	.008026		*		
SNMG 643-HK	SNMG 190612-HK	3/4	.750	1/4	3/64	.031359	.006020	*	*		
SNMG 644-HK	SNMG 190616-HK	3/4	.750	1/4	1/16	.040359	.008026		*		

Ordering Example: 20 pcs SNMG 644-HK GK1125

GRADE SELECTION GUIDE

TNMG-QF

Economical insert, 6 cutting edges. General purpose turning, facing and boring. Extra long cutting edge useful when turning to shoulders

QF: First Choice Geometry for finishing and semifinishing applications in all types of Steel.

CATALOG	IS0	DIM	IENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	STEEL			
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	
TNMG 331-QF	TNMG 160404-QF	3/8	.650	3/16	1/64	.010062	.003010	*	*	*	
TNMG 332-QF	TNMG 160408-QF	3/8	.650	3/16	1/32	.016080	.004014	*	*	*	
TNMG 431-QF	TNMG 220404-QF	1/2	.866	3/16	1/64	.010062	.003010		*	*	
TNMG 432-QF	TNMG 220408-QF	1/2	.866	3/16	1/32	.016080	.004014		*	*	

Ordering Example: 20 pcs TNMG 432-QF GP1115

TNMG-SV

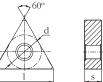
Economical insert, 6 cutting edges. General purpose turning, facing and boring. Extra long cutting edge useful when turning to shoulders.

SV: Sharp Edge Geometry for shaft turning, boring and unstable workpieces. Can handle a wide range of depths of cut.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)		STI	EEL	
NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1225			
TNMG 331R-SV	TNMG 160404R-SV	3/8	.650	3/16	1/64	.024187	.006014	*			
TNMG 331L-SV	TNMG 160404L-SV	3/8	.650	3/16	1/64	.024187	.006014	*			
TNMG 332R-SV	TNMG 160408R-SV	3/8	.650	3/16	1/32	.031187	.006016	*			
TNMG 332L-SV	TNMG 160408L-SV	3/8	.650	3/16	1/32	.031187	.006016	*			

Ordering Example: 20 pcs TNMG 332L-SV GP1225

NOTE: SV geometry inserts are available in both R (Right-hand) and L (left-hand) styles. Right-hand style is shown above. Normal External Turning applications require Right-hand (R) inserts in Right-hand holders, and Left-hand (L) inserts in Left-hand holders. For Internal / Boring applications, Left-hand (L) inserts are used in Right-hand bars, and Right-hand (R) inserts are used in Left-hand bars.


		REFERENCE PA	GES		
GRADE SELECTION GUIDE	6	TECHNICAL INFORMATION	59	CUTTING SPEED RECOMMENDATIONS	66

TNMG-QM

Economical insert, 6 cutting edges. General purpose turning, facing and boring. Extra long cutting edge useful when turning to shoulders.

QM: First Choice Geometry for medium to semi-roughing applications in all types of Steel.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)		STE	EEL	
NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	
TNMG 221-QM	TNMG 110304-QM	1/4	.433	1/8	1/64	.016109	.004012		*	*	
TNMG 222-QM	TNMG 110308-QM	1/4	.433	1/8	1/32	.020109	.005014		*	*	
TNMG 331-QM	TNMG 160404-QM	3/8	.650	3/16	1/64	.016156	.005014	*	*	*	
TNMG 332-QM	TNMG 160408-QM	3/8	.650	3/16	1/32	.020156	.006016	*	*	*	
TNMG 333-QM	TNMG 160412-QM	3/8	.650	3/16	3/64	.031156	.007018	*	*	*	
TNMG 432-QM	TNMG 220408-QM	1/2	.866	3/16	1/32	.020187	.006016		*	*	
TNMG 433-QM	TNMG 220412-QM	1/2	.866	3/16	3/64	.031187	.007018		*	*	
TNMG 434-QM	TNMG 220416-QM	1/2	.866	3/16	1/16	.040187	.008020			*	

Ordering Example: 20 pcs TNMG 434-QM GP1225

GRADE SELECTION GUIDE

TECHNICAL INFORMATION

CUTTING SPEED RECOMMENDATIONS

TNMG-QR

Economical insert, 6 cutting edges. General purpose turning, facing and boring. Extra long cutting edge useful when turning to shoulders.

QR: Strong cutting edge geometry for roughing applications in all types of Steel. Well suited for unstable conditions and interrupted cuts.

CATALOG	IS0	DIN	IENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)		STI	EEL	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1225	GP1135		
TNMG 433-QR	TNMG 220412-QR	1/2	.866	3/16	3/64	.040219	.008022	*	*		
TNMG 434-QR	TNMG 220416-QR	1/2	.866	3/16	1/16	.055219	.009026		*		
TNMG 543-QR	TNMG 270612-QR	5/8	1.083	1/4	3/64	.040328	.008022	*	*		
TNMG 544-QR	TNMG 270616-QR	5/8	1.083	1/4	1/16	.055328	.009026		*		

Ordering Example: 20 pcs TNMG 544-QR GP1135

TNMG-SF

Economical insert, 6 cutting edges. General purpose turning, facing and boring. Extra long cutting edge useful when turning to shoulders.

SF: Ultra-sharp cutting edge geometry for finishing in Stainless Steels. Low cutting forces and superior workpiece surface finish without burrs.

CATALOG	100	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	S	TAINLE:	SS STE	EL
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GS3115			
TNMG 331-SF	TNMG 160404-SF	3/8	.650	3/16	1/64	.004060	.002012	*			
TNMG 332-SF	TNMG 160408-SF	3/8	.650	3/16	1/32	.004060	.002012	*			

Ordering Example: 20 pcs TNMG 332-SF GS3115

NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GS3115 is also suitable for use with iron-based, cobalt-based and nickel-based Heat Resistant Super Alloys.

TNMG-SM

Economical insert, 6 cutting edges. General purpose turning, facing and boring. Extra long cutting edge useful when turning to shoulders.

SM: Keen edge geometry especially for Stainless Steel. Unique edgeline reduces work hardening. Semi-finishing to rough machining.

CATALOC	100	DIM	IENSI	ONS (I	NCH) CUTTING		ATA (INCH)				EL
CATALOG NUMBER	ISO DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GM1125	GM3125		
TNMG 331-SM	TNMG 160404-SM	3/8	.650	3/16	1/64	.016141	.006011	*	*		
TNMG 332-SM	TNMG 160408-SM	3/8	.650	3/16	1/32	.020141	.006012	*	*		
TNMG 333-SM	TNMG 160412-SM	3/8	.650	3/16	3/64	.031141	.007013	*	*		
TNMG 432-SM	TNMG 220408-SM	1/2	.866	3/16	1/32	.020172	.006012	*	*		
TNMG 433-SM	TNMG 220412-SM	1/2	.866	3/16	3/64	.031172	.007013	*	*		
TNMG 434-SM	TNMG 220416-SM	1/2	.866	3/16	1/16	.040172	.008014	*	*		

Ordering Example: 20 pcs TNMG 434-SM GM1125

REFERENCE PAGES

GRADE SELECTION GUIDE

6

TECHNICAL INFORMATION

59

CUTTING SPEED RECOMMENDATIONS

TNMG-UK

Economical insert, 6 cutting edges. General purpose turning, facing and boring. Extra long cutting edge useful when turning to shoulders.

UK: Lower cutting force geometry for Cast Iron. Edge geometry reduces cutting forces in moderate conditions / lighter cuts.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)		CAST	IRON	
NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GK1115	GK1125		
TNMG 331-UK	TNMG 160404-UK	3/8	.650	3/16	1/64	.012187	.003012	*	*		
TNMG 332-UK	TNMG 160408-UK	3/8	.650	3/16	1/32	.016187	.004014	*	*		

Ordering Example: 20 pcs TNMG 332-UK GK1115

TNMG-HK

Economical insert, 6 cutting edges. General purpose turning, facing and boring. Extra long cutting edge useful when turning to shoulders.

HK: Exceptionally broad application range geometry primarily for Cast Iron. Strong cutting edge, excellent durability. Semi-finishing to roughing.

CATALOC	100	DIN	IENSIO	NS (I	NCH)	CUTTING D	ATA (INCH)	CAST IRON			
CATALOG NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GK1115	GK1125		
TNMG 332-HK	TNMG 160408-HK	3/8	.650	3/16	1/32	.020203	.004016	*	*		
TNMG 333-HK	TNMG 160412-HK	3/8	.650	3/16	3/64	.031203	.006020	*	*		
TNMG 432-HK	TNMG 220408-HK	1/2	.866	3/16	1/32	.020219	.004016	*	*		
TNMG 433-HK	TNMG 220412-HK	1/2	.866	3/16	3/64	.031219	.006020	*	*		
TNMG 434-HK	TNMG 220416-HK	1/2	.866	3/16	1/16	.040219	.008026		*		
TNMG 543-HK	TNMG 270612-HK	5/8	1.083	1/4	3/64	.031297	.006020	*	*		
TNMG 544-HK	TNMG 270616-HK	5/8	1.083	1/4	1/16	.040297	.008026		*		

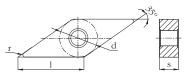
Ordering Example: 20 pcs TNMG 544-HK GK1125

REFERENCE PAGES

GRADE SELECTION GUIDE

6

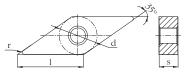
TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

VNMG-QF

Double-sided 35° diamond. Profiling and copy turning. Not recommended for boring operations due to high negative rake of boring bar pocket.


QF: First Choice Geometry for finishing and semifinishing applications in all types of Steel.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)		STE	EEL	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	
VNMG 331-QF	VNMG 160404-QF	3/8	.654	3/16	1/64	.010062	.003010	*	*	*	
VNMG 332-QF	VNMG 160408-QF	3/8	.654	3/16	1/32	.016080	.004014	*	*	*	
VNMG 431-QF	VNMG 220404-QF	1/2	.872	3/16	1/64	.010062	.003010		*		
VNMG 432-QF	VNMG 220408-QF	1/2	.872	3/16	1/32	.016080	.004014		*		

Ordering Example: 20 pcs VNMG 432-QF GP1115

VNMG-QM

Double-sided 35° diamond. Profiling and copy turning. Not recommended for boring operations due to high negative rake of boring bar pocket.

QM: First Choice Geometry for medium to semi-roughing applications in all types of Steel.

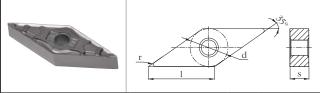
CATALOG	ISO -	DIM	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)		STE	EEL	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	
VNMG 331-QM	VNMG 160404-QM	3/8	.654	3/16	1/64	.016141	.005014	*	*	*	
VNMG 332-QM	VNMG 160408-QM	3/8	.654	3/16	1/32	.020141	.006016	*	*	*	
VNMG 333-QM	VNMG 160412-QM	3/8	.654	3/16	3/64	.031141	.007018		*	*	

Ordering Example: 20 pcs VNMG 333-QM GP1115

REFERENCE PAGES

GRADE SELECTION GUIDE

6


TECHNICAL INFORMATION

59

CUTTING SPEED RECOMMENDATIONS

VNMG-SF

Double sided 35° diamond. Profiling and copy turning. Not recommended for boring operations due to high negative rake of boring bar pocket.

SF: Ultra-sharp cutting edge geometry for finishing in Stainless Steels. Low cutting forces and superior workpiece surface finish without burrs.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	STAINLESS STEEL			EL
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GS3115			
VNMG 331-SF	VNMG 160404-SF	3/8	.654	3/16	1/64	.004060	.002012	*			
VNMG 332-SF	VNMG 160408-SF	3/8	.654	3/16	1/32	.004060	.002012	*			

Ordering Example: 20 pcs VNMG 332-SF GS3115

NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GS3115 is also suitable for use with iron-based, cobalt-based and nickel-based Heat Resistant Super Alloys.

VNMG-SM

Double-sided 35° diamond. Profiling and copy turning. Not recommended for boring operations due to high negative rake of boring bar pocket.

SM: Keen edge geometry especially for Stainless Steel. Unique edgeline reduces work hardening. Semi-finishing to rough machining.

CATALOG	100	DIM	IENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	S	TAINLE	SS STEI	ĒL
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GM1125	GM3125		
VNMG 331-SM	VNMG 160404-SM	3/8	.654	3/16	1/64	.016125	.006011	*	*		
VNMG 332-SM	VNMG 160408-SM	3/8	.654	3/16	1/32	.020125	.006012	*	*		

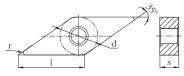
Ordering Example: 20 pcs VNMG 332-SM GM1125

REFERENCE PAGES

GRADE SELECTION GUIDE

6

TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

VNMG-UK

Double-sided 35° diamond. Profiling and copy turning. Not recommended for boring operations due to high negative rake of boring bar pocket.

UK: Lower cutting force geometry for Cast Iron. Edge geometry reduces cutting forces in moderate conditions / lighter cuts.

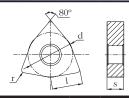
CATALOG	IS0	DIM	IENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)		CAST	IRON	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GK1115	GK1125		
VNMG 331-UK	VNMG 160404-UK	3/8	.654	3/16	1/64	.012156	.003012	*	*		
VNMG 332-UK	VNMG 160408-UK	3/8	.654	3/16	1/32	.016156	.004014	*	*		

Ordering Example: 20 pcs VNMG 332-UK GK1115

GRADE SELECTION GUIDE

6

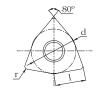
TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

WNMG-QF

General purpose turning, facing and boring. 80° corner with 6 cutting edges. Maximum economy. Good choice for general turning.


QF: First Choice Geometry for finishing and semifinishing applications in all types of Steel.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)		STI	EL	
NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	
WNMG 331-QF	WNMG 060404-QF	3/8	.257	3/16	1/64	.010062	.003010		*	*	
WNMG 332-QF	WNMG 060408-QF	3/8	.257	3/16	1/32	.016080	.004014		*	*	
WNMG 431-QF	WNMG 080404-QF	1/2	.342	3/16	1/64	.010062	.003010	*	*	*	
WNMG 432-QF	WNMG 080408-QF	1/2	.342	3/16	1/32	.016080	.004014	*	*	*	

Ordering Example: 20 pcs WNMG 432-QF GP1115

WNMG-QM

General purpose turning, facing and boring. 80° corner with 6 cutting edges. Maximum economy. Good choice for general turning.

QM: First Choice Geometry for medium to semi-roughing applications in all types of Steel.

CATALOG	ICO	DIM	IENSI	ONS (I	NCH)	CUTTING DATA (INCH			STE	EL	
NUMBER	ISO DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	
WNMG 331-QM	WNMG 060404-QM	3/8	.257	3/16	1/64	.016109	.005014		*	*	
WNMG 332-QM	WNMG 060408-QM	3/8	.257	3/16	1/32	.020109	.006016		*	*	
WNMG 431-QM	WNMG 080404-QM	1/2	.342	3/16	1/64	.016141	.005014	*	*	*	
WNMG 432-QM	WNMG 080408-QM	1/2	.342	3/16	1/32	.020141	.006016	*	*	*	
WNMG 433-QM	WNMG 080412-QM	1/2	.342	3/16	3/64	.031141	.007018	*	*	*	
WNMG 434-QM	WNMG 080416-QM	1/2	.342	3/16	1/16	.040141	.008020			*	

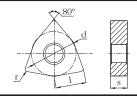
Ordering Example: 20 pcs WNMG 434-QM GP1225

REFERENCE PAGES

GRADE SELECTION GUIDE

6

TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

WNMG-QR

General purpose turning, facing and boring. 80° corner with 6 cutting edges. Maximum economy. Good choice for general turning.

QR: Strong cutting edge geometry for roughing applications in all types of Steel. Well suited for unstable conditions and interrupted cuts.

CATALOC	100	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)		STI	EEL	
CATALOG NUMBER	ISO DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	GP1135
WNMG 432-QR	WNMG 080408-QR	1/2	.342	3/16	1/32	.028172	.007020	*	*	*	*
WNMG 433-QR	WNMG 080412-QR	1/2	.342	3/16	3/64	.040172	.008022	*	*	*	*
WNMG 434-QR	WNMG 080416-QR	1/2	.342	3/16	1/16	.055172	.009026		*		*

Ordering Example: 20 pcs WNMG 434-QR GP1135

REFERENCE PAGES

GRADE SELECTION GUIDE 6 TECHNICAL INFORMATION

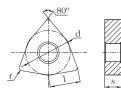

59

CUTTING SPEED RECOMMENDATIONS

WNMG-SF

General purpose turning, facing and boring. 80° corner with 6 cutting edges. Maximum economy. Good choice for general turning.

SF: Ultra-sharp cutting edge geometry for finishing in Stainless Steels. Low cutting forces and superior workpiece surface finish without burrs.


CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	S	TAINLE	SS STEI	EL
NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GS3115			
WNMG 431-SF	WNMG 080404-SF	1/2	.342	3/16	1/64	.004060	.002012	*			
WNMG 432-SF	WNMG 080408-SF	1/2	.342	3/16	1/32	.004060	.002012	*			

Ordering Example: 20 pcs WNMG 432-SF GS3115

NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GS3115 is also suitable for use with iron-based, cobalt-based and nickel-based Heat Resistant Super Alloys.

WNMG-SM

General purpose turning, facing and boring. 80° corner with 6 cutting edges. Maximum economy. Good choice for general turning.

SM: Keen edge geometry especially for Stainless Steel. Unique edgeline reduces work hardening. Semi-finishing to rough machining.

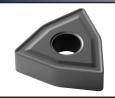
CATALOC	ISO -	DIM	ENSI	NS (I	(INCH) CUTTING DATA (INCH		ATA (INCH)	ST	TAINLE:	SS STEI	EL
CATALOG NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GM1125	GM3125		
WNMG 331-SM	WNMG 060404-SM	3/8	.257	3/16	1/64	.016109	.006011	*	*		
WNMG 332-SM	WNMG 060408-SM	3/8	.257	3/16	1/32	.020109	.006012	*	*		
WNMG 333-SM	WNMG 060412-SM	3/8	.257	3/16	3/64	.031109	.007013	*	*		
WNMG 431-SM	WNMG 080404-SM	1/2	.342	3/16	1/64	.016125	.006011	*	*		
WNMG 432-SM	WNMG 080408-SM	1/2	.342	3/16	1/32	.020125	.006012	*	*		
WNMG 433-SM	WNMG 080412-SM	1/2	.342	3/16	3/64	.031125	.007013	*	*		

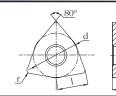
Ordering Example: 20 pcs WNMG 433-SM GM1125

REFERENCE PAGES

GRADE SELECTION GUIDE

6

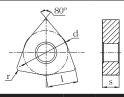

TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

WNMG-UK


General purpose turning, facing and boring. 80° corner with 6 cutting edges. Maximum economy. Good choice for general turning.


UK: Lower cutting force geometry for Cast Iron. Edge geometry reduces cutting forces in moderate conditions / lighter cuts.

CATALOG	100	DIM	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)		CAST	IRON	
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GK1115	GK1125		
WNMG 431-UK	WNMG 080404-UK	1/2	.342	3/16	1/64	.012156	.003012	*	*		
WNMG 432-UK	WNMG 080408-UK	1/2	.342	3/16	1/32	.016156	.004014	*	*		

Ordering Example: 20 pcs WNMG 432-UK GK1115

WNMG-HK

General purpose turning, facing and boring. 80° corner with 6 cutting edges. Maximum economy. Good choice for general turning.

HK: Exceptionally broad application range geometry primarily for Cast Iron. Strong cutting edge, excellent durability. Semi-finishing through to roughing.

CATALOG	ISO -	DIM	IENSI	ONS (II	NCH)	CUTTING D	OATA (INCH)		CAST	IRON	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GK1115	GK1125		
WNMG 432-HK	WNMG 080408-HK	1/2	.342	3/16	1/32	.020172	.004016	*	*		
WNMG 433-HK	WNMG 080412-HK	1/2	.342	3/16	3/64	.031172	.006020	*	*		

Ordering Example: 20 pcs WNMG 433-HK GK1115

REFERENCE PAGES

GRADE SELECTION GUIDE

6

TECHNICAL INFORMATION

59

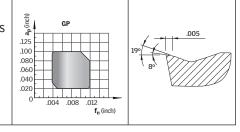
CUTTING SPEED RECOMMENDATIONS

TURNING INSERTS | POSITIVE RAKE

ANSI / ISO STANDARD INSERTS
FOR EXTERNAL TURNING AND
INTERNAL MACHINING OPERATIONS
WITH LOW CUTTING FORCES

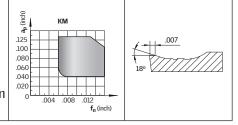
WORKPIECE	ANCT	100	Coating Type							
MATERIAL	ANSI	IS0	CVD	PVD	Uncoated					
P Steel	C8	01	[05			tance				
		10	GP1115 25			wear resistance				
	C7	20	GP1225	GP3125		×				
	C6	30	GP1	5		ness				
		40			,	toughness				
Stainless Steel	-	01	بر	15 5		stance				
	-	10	GM1125	GS3115 GP3125		wear resistance				
	-	20	6			1				
	_	30			,	toughness				
K Cast Iron	C4	01	15			istance				
	C3	10	GK1115	GP3125		wear resistance				
	C2	20		<u>5</u>		1				
	C1	30			,	toughness				
N Non-Ferrous Materials	C4	01				istance				
	C3	10		GN3125	GN9125	wear resistance				
	C2	20		25	25	1				
	C1	30				toughness				
S Heat-Resistant Super Alloys	-	01		15		istance				
	-	10		GS3115		wear resistance				
	-	20				1				
	-	30			,	toughness				

See pages 68 and 69 for more information on grades for turning.


Chipbreaker	Description	Chipbreaker Range	Design			
MM P M	 High performance finishing chipbreaker Double-positive chipformer design Exceptionally sharp cutting edge Low cutting forces Superior workpiece surface finish 	MM (F) (125) (100)	30 005			

GP

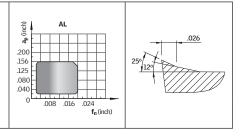
M


•

- Good All-Round geometry for Positive Inserts
- Works in a broad range of materials
- Double-positive chipformer design
- Reduced top land for feedrates < .004"
- 11° Style inserts primarily used for boring

KM

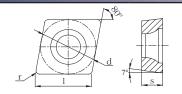
- Roughing chipbreaker tough and strong
- High fracture resistance
- Variable land cutting edge design
- · Smooth cutting action and chip flow
- Exceptional performance in steel and cast iron



AL chipbreaker inserts, for aluminum and other non-ferrous materials

AL

- Ultra-sharp edge with polished rake face
- Super Positive (25°) top rake
- Free cutting and smooth chip flow
- Ultra-low cutting forces
- Resistant to Built-up-Edge


~L

N NON-FERROUS

CCMT-MM

80° diamond inserts for turning and facing or boring and facing. Positive rake, screw-down inserts.

MM: Ultra-sharp cutting edge geometry for finishing and semi-finishing operations. Low cutting forces and superior workpiece surface finish.

CATALOG NUMBER		DIMENSIONS (INCH)			NCH)	CUTTING DATA (INCH)		STEEL			STAINLESS		
	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	GS3115	GM1125	
CCMT 2(1.5)0.5-MM	CCMT 060202-MM	1/4	.254	3/32	.008	.004031	.002005		*	*	*	*	
CCMT 2(1.5)1-MM	CCMT 060204-MM	1/4	.254	3/32	1/64	.004047	.002006	*	*	*	*	*	
CCMT 3(2.5)0.5-MM	CCMT 09T302-MM	3/8	.381	5/32	.008	.004031	.002005		*	*	*	*	
CCMT 3(2.5)1-MM	CCMT 09T304-MM	3/8	.381	5/32	1/64	.004062	.002006	*	*	*	*	*	
CCMT 3(2.5)2-MM	CCMT 09T308-MM	3/8	.381	5/32	1/32	.004062	.003008	*	*	*	*	*	

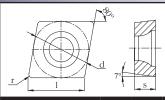
Ordering Example: 20 pcs CCMT 3(2.5)2-MM GM1125

NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GS3115 is also suitable for use with iron-based, cobalt-based and nickel-based Heat Resistant Super Alloys.

GRADE SELECTION GUIDE

34

TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

CCMT-GP

80° diamond inserts for turning and facing or boring and facing. Positive rake, screw-down inserts.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

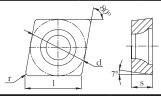
CATALOC	100	DIM	IENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	ST	EEL	CAST	IRON
CATALOG NUMBER	ISO DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
CCMT 2(1.5)1-GP	CCMT 060204-GP	1/4	.254	3/32	1/64	.020047	.003008	*		*	
CCMT 2(1.5)2-GP	CCMT 060208-GP	1/4	.254	3/32	1/32	.031062	.004010	*		*	
CCMT 3(2.5)0.5-GP	CCMT 09T302-GP	3/8	.381	5/32	.008	.010040	.003006	*		*	
CCMT 3(2.5)1-GP	CCMT 09T304-GP	3/8	.381	5/32	1/64	.020062	.004008	*		*	
CCMT 3(2.5)2-GP	CCMT 09T308-GP	3/8	.381	5/32	1/32	.031080	.005010	*		*	
CCMT 431-GP	CCMT 120404-GP	1/2	.508	3/16	1/64	.020062	.004008	*		*	
CCMT 432-GP	CCMT 120408-GP	1/2	.508	3/16	1/32	.031080	.005010	*		*	
CCMT 433-GP	CCMT 120412-GP	1/2	.508	3/16	3/64	.040100	.006012	*		*	

Ordering Example: 20 pcs CCMT 433-GP GP1225

GRADE SELECTION GUIDE

34

TECHNICAL INFORMATION


59

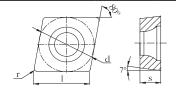
CUTTING SPEED RECOMMENDATIONS

CCGT-GP

80° diamond inserts for turning and facing or boring and facing. Precision tolerance, positive rake screw-down inserts.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	Р	M	K	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	MU	IAL		
CCGT 2(1.5)0.5-GP	CCGT 060202-GP	1/4	.254	3/32	.008	.010031	.003006		*		
CCGT 2(1.5)1-GP	CCGT 060204-GP	1/4	.254	3/32	1/64	.020047	.003008		*		
CCGT 2(1.5)2-GP	CCGT 060208-GP	1/4	.254	3/32	1/32	.031062	.004010		*		
CCGT 3(2.5)0.5-GP	CCGT 09T302-GP	3/8	.381	5/32	.008	.010040	.003006		*		
CCGT 3(2.5)1-GP	CCGT 09T304-GP	3/8	.381	5/32	1/64	.020062	.004008		*		
CCGT 3(2.5)2-GP	CCGT 09T308-GP	3/8	.381	5/32	1/32	.031080	.005010	*			
CCGT 431-GP	CCGT 120404-GP	1/2	.508	3/16	1/64	.020062	.004008	*			
CCGT 432-GP	CCGT 120408-GP	1/2	.508	3/16	1/32	.031080	.005010	*			


Ordering Example: 20 pcs CCGT 432-GP GP3125

CCMT-KM

80° diamond inserts for turning and facing or boring and facing. Positive rake, screw-down inserts.

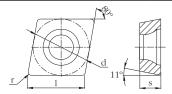
KM: Positive rake roughing geometry. Strong cutting edge with high fracture resistance. Excellent performance in steels and cast iron.

0.4.7.4.0.0		DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	ST	EEL	CAST	IRON
CATALOG NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
CCMT 3(2.5)1-KM	CCMT 09T304-KM	3/8	.381	5/32	1/64	.040094	.006012	*		*	
CCMT 3(2.5)2-KM	CCMT 09T308-KM	3/8	.381	5/32	1/32	.040109	.007014	*		*	
CCMT 432-KM	CCMT 120408-KM	1/2	.508	3/16	1/32	.040109	.007014	*		*	
CCMT 433-KM	CCMT 120412-KM	1/2	.508	3/16	3/64	.047125	.008016	*		*	

Ordering Example: 20 pcs CCMT 433-KM GP1225

34 GRADE SELECTION GUIDE

TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

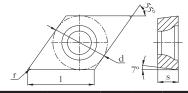
CPGT-GP

80° diamond inserts for turning and facing or boring and facing. Precision tolerance, positive rake screw-down inserts. 11° side clearance is ideal for boring.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

CATALOG	IS0	DIM	IENSI(ONS (I	NCH)	CUTTING D	ATA (INCH)	Р	M	K
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	MU	LTI-MATERIA GP3125	AL
CPGT 2(1.5)1-GP	CPGT 060204-GP	1/4	.254	3/32	1/64	.020047	.003008		*	
CPGT 2(1.5)2-GP	CPGT 060208-GP	1/4	.254	3/32	1/32	.031062	.004010		*	
CPGT 3(2.5)0.5-GP	CPGT 09T302-GP	3/8	.381	5/32	.008	.010040	.003006		*	
CPGT 3(2.5)1-GP	CPGT 09T304-GP	3/8	.381	5/32	1/64	.020062	.004008		*	
CPGT 3(2.5)2-GP	CPGT 09T308-GP	3/8	.381	5/32	1/32	.031080	.005010	*		
CPGT 431-GP	CPGT 120404-GP	1/2	.508	3/16	1/64	.020062	.004008	*		
CPGT 432-GP	CPGT 120408-GP	1/2	.508	3/16	1/32	.031080	.005010			

Ordering Example: 20 pcs CPGT 432-GP GP3125



GRADE SELECTION GUIDE

DCMT-MM

55° diamond inserts for profile turning and finishing. Positive rake screw-down inserts. Good choice for small diameter and slender workpieces.

MM: Ultra-sharp cutting edge geometry for finishing and semi-finishing operations. Low cutting forces and superior workpiece surface finish.

ISO —				CUTTING DATA (INCH			STEEL		STAIN	ILESS	
DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	GS3115	GM1125
DCMT 070202-MM	1/4	.305	3/32	.008	.004031	.002005		*	*	*	*
DCMT 070204-MM	1/4	.305	3/32	1/64	.004047	.002006	*	*	*	*	*
DCMT 11T302-MM	3/8	.458	5/32	.008	.004031	.002005		*	*	*	*
DCMT 11T304-MM	3/8	.458	5/32	1/64	.004062	.002006	*	*	*	*	*
DCMT 11T308-MM	3/8	.458	5/32	1/32	.004062	.003008	*	*	*	*	*
	DESIGNATION DCMT 070202-MM DCMT 070204-MM DCMT 11T302-MM	ISO DESIGNATION d DCMT 070202-MM 1/4 DCMT 070204-MM 1/4 DCMT 11T302-MM 3/8 DCMT 11T304-MM 3/8	ISO DESIGNATION d I DCMT 070202-MM 1/4 .305 DCMT 070204-MM 1/4 .305 DCMT 11T302-MM 3/8 .458 DCMT 11T304-MM 3/8 .458	ISO DESIGNATION d	ISO DESIGNATION d I s r DCMT 070202-MM 1/4 .305 3/32 .008 DCMT 070204-MM 1/4 .305 3/32 1/64 DCMT 11T302-MM 3/8 .458 5/32 .008 DCMT 11T304-MM 3/8 .458 5/32 1/64	ISO DESIGNATION d I s r depth of cut, a _p DCMT 070202-MM 1/4 .305 3/32 .008 .004031 DCMT 070204-MM 1/4 .305 3/32 1/64 .004047 DCMT 11T302-MM 3/8 .458 5/32 .008 .004031 DCMT 11T304-MM 3/8 .458 5/32 1/64 .004062	ISO DESIGNATION d	ISO DESIGNATION d I s r depth of cut, ap feed per rev, fn 5 DCMT 070202-MM 1/4 .305 3/32 .008 .004031 .002005 DCMT 070204-MM 1/4 .305 3/32 1/64 .004047 .002006 ★ DCMT 11T302-MM 3/8 .458 5/32 .008 .004031 .002005 ★ DCMT 11T304-MM 3/8 .458 5/32 1/64 .004062 .002006 ★	ISO DESIGNATION d I s r depth of cut, ap feed per rev, fn 55 55 DCMT 070202-MM 1/4 .305 3/32 .008 .004031 .002005 ★ DCMT 070204-MM 1/4 .305 3/32 1/64 .004047 .002006 ★ ★ DCMT 11T302-MM 3/8 .458 5/32 .008 .004031 .002005 ★ DCMT 11T304-MM 3/8 .458 5/32 1/64 .004062 .002006 ★	ISO DESIGNATION d I s r depth of cut, ap feed per rev, fn 55	ISO DESIGNATION d I s r depth of cut, ap feed per rev, fn 55

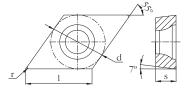
Ordering Example: 20 pcs DCMT 3(2.5)2-MM GM1125

NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GS3115 is also suitable for use with iron-based, cobalt-based and nickel-based Heat Resistant Super Alloys.

GRADE SELECTION GUIDE

34

TECHNICAL INFORMATION


59

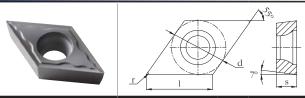
9 CUTTING SPEED RECOMMENDATIONS

DCMT-GP

55° diamond inserts for profile turning and finishing. Positive rake screw-down inserts. Good choice for small diameter and slender workpieces.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

CATALOC	100	DIM	IENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	STI	EEL	CAST	IRON
CATALOG NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
DCMT 2(1.5)1-GP	DCMT 070204-GP	1/4	.305	3/32	1/64	.020047	.003008	*		*	
DCMT 2(1.5)2-GP	DCMT 070208-GP	1/4	.305	3/32	1/32	.031062	.004010	*		*	
DCMT 3(2.5)0.5-GP	DCMT 11T302-GP	3/8	.458	5/32	.008	.010040	.003006	*		*	
DCMT 3(2.5)1-GP	DCMT 11T304-GP	3/8	.458	5/32	1/64	.020062	.004008	*		*	
DCMT 3(2.5)2-GP	DCMT 11T308-GP	3/8	.458	5/32	1/32	.031080	.005010	*		*	
DCMT 431-GP	DCMT 150404-GP	1/2	.610	3/16	1/64	.020062	.004008	*		*	
DCMT 432-GP	DCMT 150408-GP	1/2	.610	3/16	1/32	.031080	.005010	*		*	
DCMT 433-GP	DCMT 150412-GP	1/2	.610	3/16	3/64	.040100	.006012	*		*	


Ordering Example: 20 pcs DCMT 433-GP GP1225

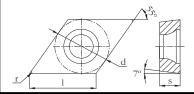
GRADE SELECTION GUIDE 34 TECHNICAL INFORMATION 59 CUTTING SPEED RECOMMENDATIONS

DCGT-GP

55° diamond inserts for profile turning and finishing. Precision tolerance, positive rake screw-down inserts. Good choice for small diameter and slender workpieces.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

CATALOG	100	DIM	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	Р	М	K
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	MU	LTI-MATERI GP3125	IAL
DCGT 2(1.5)0.5-GP	DCGT 070202-GP	1/4	.305	3/32	.008	.010031	.003006		*	
DCGT 2(1.5)1-GP	DCGT 070204-GP	1/4	.305	3/32	1/64	.020047	.003008		*	
DCGT 2(1.5)2-GP	DCGT 070208-GP	1/4	.305	3/32	1/32	.031062	.004010		*	
DCGT 3(2.5)0.5-GP	DCGT 11T302-GP	3/8	.458	5/32	.008	.010040	.003006		*	
DCGT 3(2.5)1-GP	DCGT 11T304-GP	3/8	.458	5/32	1/64	.020062	.004008			
DCGT 3(2.5)2-GP	DCGT 11T308-GP	3/8	.458	5/32	1/32	.031080	.005010			


Ordering Example: 20 pcs DCGT 3(2.5)2-GP GP3125

DCMT-KM

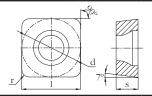
55° diamond inserts for profile turning and finishing. Positive rake screw-down inserts. Good choice for small diameter and slender workpieces.

KM: Positive rake roughing geometry. Strong cutting edge with high fracture resistance. Excellent performance in steels and cast iron.

CATALOG	IS0	DIM	IENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	STI	EEL	CAST	IRON
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
DCMT 3(2.5)1-KM	DCMT 11T304-KM	3/8	.458	5/32	1/64	.040094	.006012	*		*	
DCMT 3(2.5)2-KM	DCMT 11T308-KM	3/8	.458	5/32	1/32	.040109	.007014	*		*	

Ordering Example: 20 pcs DCMT 3(2.5)2-KM GP1225

GRADE SELECTION GUIDE

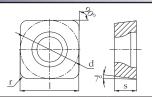

TECHNICAL INFORMATION

CUTTING SPEED RECOMMENDATIONS

SCMT-MM

Generally used for semi-finishing operations: turning, facing or boring. Positive rake screw-down style inserts. Good economy with 4 cutting edges.

MM: Ultra-sharp cutting edge geometry for finishing and semi-finishing operations. Low cutting forces and superior workpiece surface finish.


CATALOG	IS0					CUTTING D	ATA (INCH)	STEEL			STAINLESS	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	GS3115	GM1125
SCMT 3(2.5)2-MM	SCMT 09T308-MM	3/8	.375	5/32	1/32	.004062	.003008	*	*	*	*	*

Ordering Example: 20 pcs SCMT 3(2.5)2-MM GM1125

NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GS3115 is also suitable for use with iron-based, cobalt-based and nickel-based Heat Resistant Super Alloys.

SCMT-GP

Mainly for roughing operations: turning, facing or boring. Positive rake screw-down style inserts. Good economy with 4 cutting edges.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

CATALOG	IS0	DIMENSIONS (INCH)				CUTTING D	OATA (INCH)	ST	EEL	CAST	IRON
NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
SCMT 3(2.5)1-GP	SCMT 09T304-GP	3/8	.375	5/32	1/64	.020062	.004008	*		*	
SCMT 3(2.5)2-GP	SCMT 09T308-GP	3/8	.375	5/32	1/32	.031080	.005010	*		*	
SCMT 431-GP	SCMT 120404-GP	1/2	.500	3/16	1/64	.020062	.004008	*		*	
SCMT 432-GP	SCMT 120408-GP	1/2	.500	3/16	1/32	.031080	.006011	*		*	

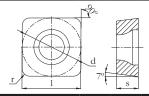
Ordering Example: 20 pcs SCMT 432-GP GP1225

REFERENCE PAGES

GRADE SELECTION GUIDE

34

TECHNICAL INFORMATION


59

CUTTING SPEED RECOMMENDATIONS

SCMT-KM

Mainly for roughing operations: turning, facing or boring. Positive rake screw down style inserts Good economy with 4 cutting edges.

KM: Positive rake roughing geometry. Strong cutting edge with high fracture resistance. Excellent performance in steels and cast iron.

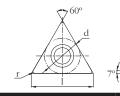
CATALOG	100	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	STI	EEL	CAST	IRON
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
SCMT 3(2.5)2-KM	SCMT 09T308-KM	3/8	.375	5/32	1/32	.040109	.007014	*		*	
SCMT 432-KM	SCMT 120408-KM	1/2	.500	3/16	1/32	.040109	.007014	*		*	

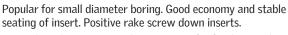
Ordering Example: 20 pcs SCMT 432-KM GP1225

GRADE SELECTION GUIDE

34

TECHNICAL INFORMATION


59


CUTTING SPEED RECOMMENDATIONS

TCMT-MM

MM: Ultra-sharp cutting edge geometry for finishing and semi-finishing operations. Low cutting forces and superior workpiece surface finish.

CATALOG	ICO	DIM	IENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	STEEL			STAIN	ILESS
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	GS3115	GM1125
TCMT 2(1.5)0.5-MM	TCMT 110202-MM	1/4	.433	3/32	.008	.004031	.002005		*	*	*	*
TCMT 2(1.5)1-MM	TCMT 110204-MM	1/4	.433	3/32	1/64	.004047	.002006	*	*	*	*	*

Ordering Example: 20 pcs TCMT 2(1.5)1-MM GM1125

NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GS3115 is also suitable for use with iron-based, cobalt-based and nickel-based Heat Resistant Super Alloys.

TCMT-GP

Popular for small diameter boring. Good economy and stable seating of insert. Positive rake screw-down inserts.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

CATALOG	100	DIM	IENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	ST	EEL	CAST	IRON
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
TCMT 2(1.5)1-GP	TCMT 110204-GP	1/4	.433	3/32	1/64	.020047	.003008	*		*	
TCMT 2(1.5)2-GP	TCMT 110208-GP	1/4	.433	3/32	1/32	.031062	.004010	*		*	
TCMT 3(2.5)1-GP	TCMT 16T304-GP	3/8	.650	5/32	1/64	.020062	.004008	*		*	
TCMT 3(2.5)2-GP	TCMT 16T308-GP	3/8	.650	5/32	1/32	.031080	.005010	*		*	
TCMT 432-GP	TCMT 220408-GP	1/2	.866	3/16	1/32	.031094	.006012	*		*	

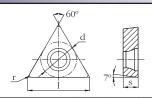
Ordering Example: 20 pcs TCMT 432-GP GP1225

RFF	CDCI	NICE	$D\Lambda$	CEC

GRADE SELECTION GUIDE

877.872.0044


TECHNICAL INFORMATION


59

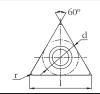
CUTTING SPEED RECOMMENDATIONS

TCGT-GP

Popular for small diameter boring. Good economy and stable seating of insert. Precision tolerance, positive rake screw-down inserts.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	Р	М	K
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	MU	LTI-MATER GP3125	IAL
TCGT 1.8(1.5)1-GP	TCGT 090204-GP	7/32	.379	3/32	1/64	.016040	.002005		*	
TCGT 2(1.5)0.5-GP	TCGT 110202-GP	1/4	.433	3/32	.008	.010040	.003006		*	
TCGT 2(1.5)1-GP	TCGT 110204-GP	1/4	.433	3/32	1/64	.020047	.003008		*	
TCGT 2(1.5)2-GP	TCGT 110208-GP	1/4	.433	3/32	1/32	.031062	.004010		*	
TCGT 3(2.5)1-GP	TCGT 16T304-GP	3/8	.650	5/32	1/64	.020062	.004008		*	
TCGT 3(2.5)2-GP	TCGT 16T308-GP	3/8	.650	5/32	1/32	.031080	.005010		*	


Ordering Example: 20 pcs TCGT 3(2.5)2-GP GP3125

TCMT-KM

Popular for small diameter boring. Good economy and stable seating of insert. Positive rake screw down inserts.

KM: Positive rake roughing geometry. Strong cutting edge with high fracture resistance. Excellent performance in steels and cast iron.

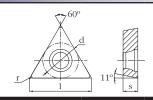
CATALOC	100	DIM	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	STI	EEL	CAST	IRON
CATALOG NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
TCMT 2(1.5)1-KM	TCMT 110204-KM	1/4	.433	3/32	1/64	.040080	.006010	*		*	
TCMT 3(2.5)1-KM	TCMT 16T304-KM	3/8	.650	5/32	1/64	.040094	.006012	*		*	
TCMT 3(2.5)2-KM	TCMT 16T308-KM	3/8	.650	5/32	1/32	.040109	.007014	*		*	

Ordering Example: 20 pcs TCMT 3(2.5)2-KM GP1225

GRADE SELECTION GUIDE

34

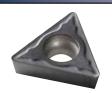
TECHNICAL INFORMATION

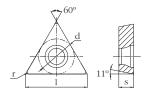

59

CUTTING SPEED RECOMMENDATIONS

TPMT-MM

Popular for small diameter boring. Good economy and stable seating of insert. Positive rake screw-down inserts. 11° side clearance is ideal for boring.


MM: Ultra-sharp cutting edge geometry for finishing and semi-finishing operations. Low cutting forces and superior workpiece surface finish.


CATALOG	ISO	DIM	IENSI	ONS (I	NCH)	CUTTING D	STEEL		STAINLESS		
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1115	GP1225	GS3115	GM1125
TPMT 2(1.5)0.5-MM	TPMT 110202-MM	1/4	.433	3/32	.008	.004031	.002005	*	*	*	*
TPMT 2(1.5)1-MM	TPMT 110204-MM	1/4	.433	3/32	1/64	.004047	.002006	*	*	*	*

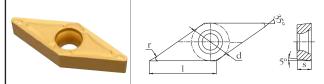
Ordering Example: 20 pcs TPMT 2(1.5)1-MM GM1125

NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GP3115 is also suitable for use with iron-based, cobalt-based and nickel-based Heat Resistant Super Alloys.

TPGT-GP

Popular for small diameter boring. Good economy and stable seating of insert. Precision tolerance, positive rake screw-down inserts. 11° side clearance is ideal for boring.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.


CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	Р	P M			
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	MU	MULTI-MATERIAL GP3125			
TPGT 2(1.5)1-GP	TPGT 110204-GP	1/4	.433	3/32	1/64	.020047	.003008					
TPGT 2(1.5)2-GP	TPGT 110208-GP	1/4	.433	3/32	1/32	.031062	.004010		*			
TPGT 3(2.5)1-GP	TPGT 16T304-GP	3/8	.650	5/32	1/64	.020062	.004008		*			
TPGT 3(2.5)2-GP	TPGT 16T308-GP	3/8	.650	5/32	1/32	.031080	.005010					

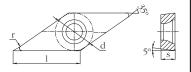
Ordering Example: 20 pcs TPGT 3(2.5)2-GP GP3125

REFERENCE PAGES GRADE SELECTION GUIDE 34 TECHNICAL INFORMATION 59 CUTTING SPEED RECOMMENDATIONS 66

VBMT-MM

First choice shape for 35° diamond profile turning and boring. Positive rake screw-down inserts with 5° side clearance.

MM: Ultra-sharp cutting edge geometry for finishing and semi-finishing operations. Low cutting forces and superior workpiece surface finish.


CATALOC	ISO -	DIM	IENSI	ONS (I	NCH)	CUTTING D	STEEL			STAINLESS		
CATALOG NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1105	GP1115	GP1225	GS3115	GM1125
VBMT 221-MM	VBMT 110304-MM	1/4	.436	1/8	1/64	.004047	.002006		*	*	*	*
VBMT 331-MM	VBMT 160404-MM	3/8	.654	3/16	1/64	.004062	.002006	*	*	*	*	*
VBMT 332-MM	VBMT 160408-MM	3/8	.654	3/16	1/32	.004062	.003008	*	*	*	*	*

Ordering Example: 20 pcs VBMT 332-MM GM1125

NOTE: The primary application area for grade GS3115 is in stainless steel workpiece materials. GS3115 is also suitable for use with iron-based, cobalt-based and nickel-based Heat Resistant Super Alloys.

VBMT-GP

First choice for 35° diamond external profile turning. 5° clearance angle provides more secure insert clamping than VCMT style.

GP: All-round positive rake geometry with wide application area.

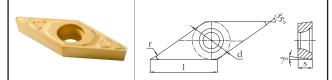
CATALOG	IS0	DIM	IENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	ST	EEL	CAST	IRON
NUMBER	DESIGNATION	d	1	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
VBMT 331-GP	VBMT 160404-GP	3/8	.654	3/16	1/64	.020062	.004008	*		*	
VBMT 332-GP	VBMT 160408-GP	3/8	.654	3/16	1/32	.031080	.005010	*		*	

Ordering Example: 20 pcs VBMT 332-GP GP1225

REFERENCE PAGES

GRADE SELECTION GUIDE

34

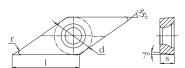

TECHNICAL INFORMATION

59

CUTTING SPEED RECOMMENDATIONS

VCMT-GP

First choice shape for 35° diamond profile turning and boring. Positive cutting action provides for a more secure cutting edge than VNMG style.


GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	OATA (INCH)	ST	EEL	CAST	IRON
NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
VCMT 221-GP	VCMT 110304-GP	1/4	.436	1/8	1/64	.020047	.003008	*		*	
VCMT 331-GP	VCMT 160404-GP	3/8	.654	3/16	1/64	.020062	.004008	*		*	
VCMT 332-GP	VCMT 160408-GP	3/8	.654	3/16	1/32	.031080	.005010	*		*	

Ordering Example: 20 pcs VCMT 332-GP GP1225

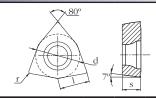
VCGT-GP

First choice shape for 35° diamond profile turning and boring. Precision tolerance. Positive cutting action provides for a more secure cutting edge than VNMG style.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	Р	M	K
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	MU	IAL	
VCGT 221-GP	VCGT 110304-GP	1/4	.436	1/8	1/64	.020047	.003008			
VCGT 331-GP	VCGT 160404-GP	3/8	.654	3/16	1/64	.020062	.004008		*	
VCGT 332-GP	VCGT 160408-GP	3/8	.654	3/16	1/32	.031080	.005010	*		

Ordering Example: 20 pcs VCGT 332-GP GP3125


NOTE: VCMT and VCGT inserts fit into and can be used with toolholders and boring bars made for VBMT-style inserts.

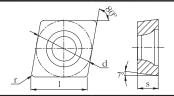
	REFERENCE	PAGES		
GRADE SELECTION GUIDE 3	TECHNICAL INFORMATION	N 59	CUTTING SPEED RECOMMENDATIONS	66

WCMT-GP

80° corner Trigon inserts for turning, facing and boring. Positive rake screw-down inserts. Extra economy due to 3 cutting edges.

GP: All-round positive rake geometry. Wide application area. Excellent for boring in most materials.

CATALOC	100	DIM	IENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	ST	EEL	CAST	IRON
CATALOG NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GP1225		GK1115	
WCMT 3(2.5)1-GP	WCMT 06T304-GP	3/8	.257	5/32	1/64	.020062	.003008	*		*	
WCMT 3(2.5)2-GP	WCMT 06T308-GP	3/8	.257	5/32	1/32	.031080	.005010	*		*	

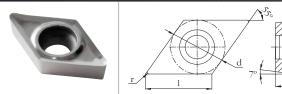

Ordering Example: 20 pcs WCMT 3(2.5)2-GP GP1225

CCGX-AL

Precision Ground, High Positive, polished 80° diamond inserts for turning, boring and facing of Aluminum, nonferrous materials and non-metallics.

AL: Extremely high 25° positive rake geometry. Super sharp edgeline with polished face for smooth chip flow.

CATALOG ISO		DIM	ENSI	ONS (I	NCH)	CUTTING DATA (INCH)			NON-FERROUS		
NUMBER	ISO DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GN3125	GN9125		
CCGX 2(1.5)0.5-AL	CCGX 060202-AL	1/4	.254	3/32	.008	.010047	.002008	*	*		
CCGX 2(1.5)1-AL	CCGX 060204-AL	1/4	.254	3/32	1/64	.016062	.004010	*	*		
CCGX 2(1.5)2-AL	CCGX 060208-AL	1/4	.254	3/32	1/32	.020062	.006020	*	*		
CCGX 3(2.5)0.5-AL	CCGX 09T302-AL	3/8	.381	5/32	.008	.010094	.002008	*	*		
CCGX 3(2.5)1-AL	CCGX 09T304-AL	3/8	.381	5/32	1/64	.016125	.004010	*	*		
CCGX 3(2.5)2-AL	CCGX 09T308-AL	3/8	.381	5/32	1/32	.020125	.006020	*	*		
CCGX 430.5-AL	CCGX 120402-AL	1/2	.508	3/16	.008	.010125	.002008	*	*		
CCGX 431-AL	CCGX 120404-AL	1/2	.508	3/16	1/64	.016187	.004010	*	*		
CCGX 432-AL	CCGX 120408-AL	1/2	.508	3/16	1/32	.020187	.006020	*	*		


Ordering Example: 20 pcs CCGX 432-AL GN9125

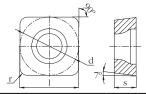
GRADE SELECTION GUIDE

DCGX-AL

Precision Ground, High Positive, polished 55° diamond inserts for profiling of Aluminum, non-ferrous materials and non-metallics.

AL: Extremely high 25° positive rake geometry. Super sharp edgeline with polished face for smooth chip flow.

CATALOC	CATALOG ISO		ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)		NON-FE	RROUS	
NUMBER	ISO DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GN3125	GN9125		
DCGX 2(1.5)0.5-AL	DCGX 070202-AL	1/4	.305	3/32	.008	.010062	.002008	*	*		
DCGX 2(1.5)1-AL	DCGX 070204-AL	1/4	.305	3/32	1/64	.016094	.004010	*	*		
DCGX 2(1.5)2-AL	DCGX 070208-AL	1/4	.305	3/32	1/32	.020094	.006020	*	*		
DCGX 3(2.5)0.5-AL	DCGX 11T302-AL	3/8	.458	5/32	.008	.010094	.002008	*	*		
DCGX 3(2.5)1-AL	DCGX 11T304-AL	3/8	.458	5/32	1/64	.016125	.004010	*	*		
DCGX 3(2.5)2-AL	DCGX 11T308-AL	3/8	.458	5/32	1/32	.020125	.006020	*	*		

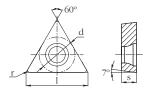

Ordering Example: 20 pcs DCGX 3(2.5)2-AL GN9125

SCGX-AL

Precision Ground, High Positive, polished square inserts for turning, facing and boring of Aluminum, non-ferrous materials and non-metallics.

AL: Extremely high 25° positive rake geometry. Super sharp edgeline with polished face for smooth chip flow.

CATALOC	100	DIM	IENSI	ONS (I	(INCH) CUTTING DATA (INCH)			NON-FERROUS			
CATALOG NUMBER	ISO DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GN3125	GN9125		
SCGX 3(2.5)1-AL	SCGX 09T304-AL	3/8	.375	5/32	1/64	.016125	.004010	*	*		
SCGX 3(2.5)2-AL	SCGX 09T308-AL	3/8	.375	5/32	1/32	.020125	.006020	*	*		
SCGX 431-AL	SCGX 120404-AL	1/2	.500	3/16	1/64	.016156	.004010	*	*		
SCGX 432-AL	SCGX 120408-AL	1/2	.500	3/16	1/32	.020156	.006020	*	*		

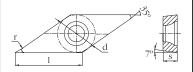

Ordering Example: 20 pcs SCGX 432-AL GN9125

TCGX-AL

Precision Ground, High Positive, polished triangular inserts for turning and boring of Aluminum, non-ferrous materials and non-metallics.

AL: Extremely high 25° positive rake geometry. Super sharp edgeline with polished face for smooth chip flow.

		DIM	ENSI	MC /T	NCII)	CUTTING D	ATA (INCH)		NON E	RROUS	
CATALOG	ISO	DIIVI	ENSI)N2 (I	NCH)	COTTING	AIA (INCH)			RRUUS	
NUMBER	DESIGNATION	d	I	S	r	depth of cut, a _p	feed per rev, f _n	GN3125	GN9125		
TCGX 1.8(1.5)1-AL	TCGX 090204-AL	7/32	.379	3/32	1/64	.016094	.004008	*	*		
TCGX 2(1.5)0.5-AL	TCGX 110202-AL	1/4	.433	3/32	.008	.010094	.002008	*	*		
TCGX 2(1.5)1-AL	TCGX 110204-AL	1/4	.433	3/32	1/64	.016125	.004010	*	*		
TCGX 2(1.5)2-AL	TCGX 110208-AL	1/4	.433	3/32	1/32	.020125	.006020	*	*		
TCGX 3(2.5)0.5-AL	TCGX 16T302-AL	3/8	.650	5/32	.008	.010125	.002008	*	*		
TCGX 3(2.5)1-AL	TCGX 16T304-AL	3/8	.650	5/32	1/64	.016156	.004010	*	*		
TCGX 3(2.5)2-AL	TCGX 16T308-AL	3/8	.650	5/32	1/32	.020156	.006020	*	*		


Ordering Example: 20 pcs TCGX 3(2.5)2-AL GN9125

VCGX-AL

Precision Ground, High Positive, polished 35° diamond inserts for intricate profiling of Aluminum, non-ferrous materials and non-metallics.

AL: Extremely high 25° positive rake geometry. Super sharp edgeline with polished face for smooth chip flow.

CATALOG	IS0	DIM	ENSI	ONS (I	NCH)	CUTTING DATA (INCH)			NON-FE	ERROUS	
NUMBER	DESIGNATION	d	ı	S	r	depth of cut, a _p	feed per rev, f _n	GN3125	GN9125		
VCGX 220.5-AL	VCGX 110302-AL	1/4	.436	1/8	.008	.010062	.002008	*	*		
VCGX 221-AL	VCGX 110304-AL	1/4	.436	1/8	1/64	.016087	.004010	*	*		
VCGX 222-AL	VCGX 110308-AL	1/4	.436	1/8	1/32	.020087	.006020	*	*		
VCGX 330.5-AL	VCGX 160402-AL	3/8	.654	3/16	.008	.010125	.002008	*	*		
VCGX 331-AL	VCGX 160404-AL	3/8	.654	3/16	1/64	.016156	.004010	*	*		
VCGX 332-AL	VCGX 160408-AL	3/8	.654	3/16	1/32	.020156	.006020	*	*		
VCGX 333-AL	VCGX 160412-AL	3/8	.654	3/16	3/64	.020156	.006031	*	*		
VCGX 220512-AL	VCGX 220512-AL	1/2	.872	7/32	3/64	.020187	.006031	*	*		
VCGX 220516-AL	VCGX 220516-AL	1/2	.872	7/32	1/16	.020187	.006031	*	*		
VCGX 220530-AL	VCGX 220530-AL	1/2	.872	7/32	.118	.020187	.010040	*	*		

Ordering Example: 20 pcs VCGX 220530-AL GN9125

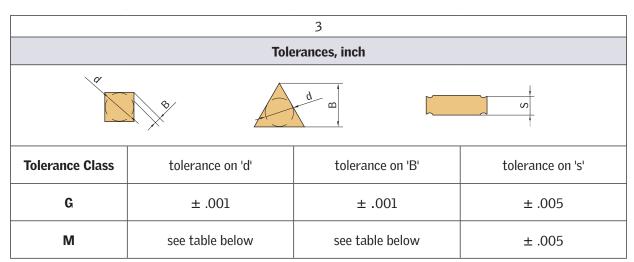
GRADE SELECTION GUIDE

TECHNICAL INFORMATION TURNING

Code Keys	60
Formulas & Nomenclature	64
Surface Roughness	65
Cutting Speed Recommendations	66
Grades for Turning	68
Troubleshooting	70

TURNING INSERTS CODE KEY | ANSI

EXAMPLE 1



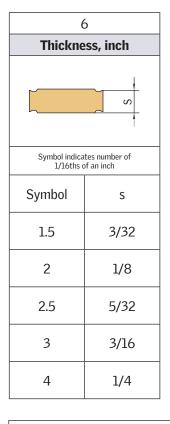
	1						
	Insert Shape						
С	80° Diamond						
D	55º Diamond						
S	Square						
Т	Triangle						
V	35º Diamond						
W	80° Corner Trigon	\triangle					

	2					
	Clearance Angle					
В	5º Positive Rake					
С	7º Positive Rake					
N	0º Negative Rake					
Р	11º Positive Rake					

Tolerance Class M, inch										
d	tolerance on 'd'		tolerance on 'B'							
a	All Shapes	C, S, T, W Shapes	D Shape	V Shape						
7/32	± .002	± .003	± .004	N/A						
1/4	± .002	± .003	± .004	± .007						
3/8	± .002	± .003	± .004	± .007						
1/2	± .003	± .005	± .006	± .010						
5/8	± .004	± .006	± .007	N/A						
3/4	± .004	± .006	± .007	N/A						

TURNING INSERTS CODE KEY | ANSI

EXAMPLE 2



GP

	4	
	Insert Type	
G	With hole, Pin / Top Clamp Double-sided	
Т	With hole, Screw-down Clamping Single-sided	
X	Manufacturer-Specific Design	

5							
Insert Size							
In	scribed Circle, d, inch						
d							
Symbo	Symbol indicates number of 1/8ths of an inch						
Symbol	Symbol d						
1.8	7/32						
2	1/4						
3	3/8						
4	1/2						
5	5/8						
6	3/4						

Nose Radius, inch				
r				
	tes number of of an inch			
Symbol	r			
0.5	.008			
1	1/64			
2	1/32			
3	3/64			
4	1/16			

8		
Hand of Insert (optional)		
R	Right-hand	
L	Left-hand	

9
Chipbreaker Designation
Indicates the machining properties or chipbreaker features
Manufacturer-specific

TURNING INSERTS CODE KEY | ISO

EXAMPLE 1



1				
	Insert Shape			
С	80º Diamond			
D	55 ^o Diamond			
S	Square			
Т	Triangle			
V	35 ^o Diamond			
W	80° Corner Trigon			

2		
Clearance Angle		
В	5º Positive Rake	
С	7º Positive Rake	
N	0º Negative Rake	
Р	11º Positive Rake	

Tolerance Class M, mm				
d	tolerance on 'd'		tolerance on 'B'	
u	All Shapes	C, S, T, W Shapes	D Shape	V Shape
5.556	± 0.05	± 0.08	± 0.10	N/A
6.350	± 0.05	± 0.08	± 0.10	± 0.18
9.525	± 0.05	± 0.08	± 0.10	± 0.18
12.700	± 0.08	± 0.13	± 0.15	± 0.25
15.875	± 0.10	± 0.15	± 0.18	N/A
19.050	± 0.10	± 0.15	± 0.18	N/A

TURNING INSERTS CODE KEY | ISO

EXAMPLE 2

2

G

T

16

04

04

8

- **GP**

	4		
	Insert Type		
G	With hole, Pin / Top Clamp Double-sided		
Т	With hole, Screw-down Clamping Single-sided	YIY	
Х	Manufacturer-Specific Design		

6			
Thickness, mm			
	S		
Symbol	S		
02	2.38		
03	3.18		
T3	3.97		
04	4.76		
05	5.56		
06	6.35		

5						
	Insert Size					
		Cutting	g Edge Leng	th, mm		
Symbol	<u>C</u>	<u>D</u>	S	T		
06	6.5					6.5
07		7.8				
08						8.7
09	9.7		9.5	9.6		
11		11.6		11.0	11.1	
12	12.9		12.7			
15		15.5	15.9			
16	16.1			16.5	16.6	
19	19.4		19.1			
22				22.0	22.2	
27				27.5		

7		
Nose Ra	dius, mm	
<u> </u>		
Symbol	r	
02	0.2	
04	0.4	
08	0.8	
12 1.2		
16 1.6		
30	3.0	

8		
Hand of Insert (optional)		
R	Right-hand	
L	Left-hand	

9	
Chipbreaker Designation	
Indicates the machining properties or chipbreaker features Manufacturer-specific	

Spindle speed, n (rpm)

$$n = \frac{3.82 \times V_c}{D}$$

Cutting speed, v_c (ft / min)

$$v_c = .262 \times D \times n$$

Feed rate, v_f (in / min)

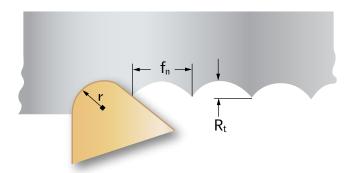
$$v_f = n \times f_n$$

Machining time, t (min)

$$t = \frac{I_m}{V_f}$$

Metal removal rate, Q (in³ / min)

$$Q = v_c \times a_p \times f_n \times 12$$


a _p	depth of cut	inches
D	workpiece diameter	inches
f _n	feed per revolution	inches
I _m	machined length	inches
n	spindle speed	rev/min
Q	metal removal rate	inches ³ /min
t	machining time	minutes
V _C	cutting speed	feet/min
٧ _f	feed rate	inches/min

The machined surface and tolerances achieved on components are directly affected by both the insert nose radius and the feed rate.

From a strictly theoretical perspective, surface roughness can be calculated from the following formula:

$$R_t = \frac{f_n^2 \times 10^6}{8 \times r}$$

Where R_t = Theoretical Profile Depth, μ inches

 $f_n = feed / rev, inches$

r = insert nose radius, inches

The following table presents feed values for common insert nose radius sizes and surface roughness requirements:

D		fee	d f _n , inches /	rev	
R _t , μinch	r = 1/64"	r = 1/32"	r = 3/64"	r = 1/16"	r = 3/32"
16	.0015	.002	.0025	.003	.0035
32	.002	.003	.0035	.004	.005
63	.003	.004	.005	.0055	.007
125	.004	.0055	.007	.008	.010
250	.0055	.008	.010	.011	.014
500	.008	.011	.014	.016	.019

The maximum feed per rev can be determined from the table by selecting the nose radius and specified surface roughness requirement.

For example, Surface roughness requirement $R_t = 63 \mu inches$

Insert nose radius r = 1/32"

Theoretical starting point for feed $f_n => .004$ inches / rev

When selecting the feed for finishing to a specified level of surface roughness, the feed values provided in the table should not be exceeded. In general the feed in a finishing operation should be kept low in order to produce an acceptable component finish.

							-	Recom	mend	ed Sta	rting	Speed	s v _c (1	ft/min)			
IS0	Material	Workpiece Material	Tensile Strength		GP1105			GP1115			GP1225	;		GP1135		(GP3125	j
130	Group	vvoi kpiece iviateriai	MPa	f _n	(inch/re	ev)	f _n	(inch/re	ev)	f _n	(inch/re	ev)	fn	(inch/re	ev)	f _n	(inch/re	€V)
				.004	.008	.012	.004	.008	.012	.004	.008	.016	.004	.016	.024	.004	.008	.012
	PO	Low-Carbon Steels, Long Chipping (C < .25%) Ex. A36, 1008, 1010, 1018, 1108, 1117 Brinell Hardness HB <125	<530	1760	1550	1370	1640	1445	1280	1400	1245	855	1215	790	655	655	525	400
	P1	Low-Carbon Steels, Short Chipping, Free Machining (C < .25%) Ex. 10L18, 1200 Series, 1213, 12L14 Brinell Hardness HB <125	<530	1500	1330	1120	1400	1245	1050	1180	1015	655	1015	590	525	600	475	360
	P2	Medium- and High-Carbon Steels (C > .25%) Ex. 1035, 1045, 10L45, 1080, 1137, 1144, 1525, 1572 Rockwell Hardness HRC <25	>530	1120	1050	950	1050	985	885	920	820	590	855	540	460	525	445	345
P	Р3	Alloy Steels and Tool Steels (C > .25%) Ex. P20, 1300, 2000, 3000, 4000, 5000, 8000, SAE A, D, H, O, S, M, T Rockwell Hardness HRC <35	600-850	1020	850	700	950	790	655	790	720	490	625	445	330	400	300	245
	P4	High-Strength Alloy Steels and Tool Steels (C > .25%) Ex P20, 1300, 2000, 3000, 4000, 5000, 8000, SAE A, D, H, O, S, M, T Rockwell Hardness HRC 35 - 48	850-1400	850	700	560	790	655	525	590	525	330	460	300	230	310	245	180
	P5	Ferritic, Martensitic and PH Stainless Steels Ex. 13-8 PH, 15-5 PH, 17-4 PH, 400 and 500 Series Rockwell Hardness HRC <35	600-900	1050	880	700	985	820	655	855	720	560	625	460	330	420	320	260
	P6	High-Strength Ferritic, Martensitic and PH Stainless Steels Ex. 13-8 PH, 15-5 PH, 17-4 PH, 400 and 500 Series Rockwell Hardness HRC 35 - 48	900-1350	630	530	350	590	490	330	425	360	300	360	260	230	230	190	135

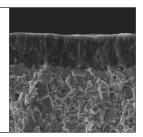
						Recommended Starti							ng Speeds v _C (ft/min)					
IS0	Material	Workpiece Material		Rockwell			GS3115		(GM1125	5	(GM3125	5		GP3125	j	
130	Group	vvoi kpiece iviateriai	HB	HRC	ardness Strength HRC MPa		(inch/re	ev)	fn	(inch/re	ev)	fn	(inch/re	ev)	fn	(inch/re	ev)	
						.004	.008	.012	.004	.008	.012	.004	.008	.012	.004	.008	.012	
	M1	Austenitic Stainless Steels Ex. 200 Series, 301, 302, 304, 304L, 309	130-200		<600	820	670	490	850	750	650	620	470	290	520	380	240	
Stainless Steel	M2	High-Strength Austenitic Stainless and Cast Stainless Steels Ex. 310, 316, 316L, 321, 347, 384	150-230	<25	600-800	740	600	440	760	670	580	560	420	260	470	340	220	
	M3	Duplex Stainless Steels Ex. 323, 329, F55, 2205	135-275	<30	<800	655	535	390	670	600	520	495	375	230	420	310	200	

						Recommended Starting Speeds v _C (ft/min)											
IS0	Material		Brinell Hardness	Rockwell Hardness	Tensile Strength		GK1115	5		GK1125			GP3125	5			
130	Group	workpiece material	HB	HRC	MPa	f _n	f _n (inch/rev)			(inch/re	ev)	f _n	(inch/r	ev)			
						.004	.008	.016	.004	.012	.020	.004	.008	.012			
	К1	Gray Cast Iron Ex. Class 20, 25, 30, 35, 40, 45, 50, 55, 60, G1800, G3000, G3500, G4000	120-290	<32	125-500	1800	1180	885	1540	885	655	625	425	360			
K Cast Iron	К2	Ductile Cast Irons (Nodular Irons) and Compacted Graphite Irons (CGI) Ex. 60-40-18, 65-45-12, 80-55-06, SAE J434: D4018, D4512, D5506	130-260	<28	<600	1215	885	690	885	655	490	525	380	330			
	К3	High-Strength Ductile Irons and Austempered Ductile Irons (ADI) Ex. ASTM A536: 100-70-03, 120-90-02, SAE J434: D7003	180-350	<43	>600	885	690	560	655	490	400	425	360	300			
								Rec	omme	nded	Starti	ng Spe	eeds v	c (ft/n	nin)		
TCO	Material	Waykniaga Matayial	Brinell Hardness	Rockwell Hardness	Tensile		GN3125	5		GN9125	5						
IS0	Group	Workpiece Material	Hardness	HRC	Strength MPa	fn	(inch/re	ev)	fn	(inch/re	ev)						
						.004	.008	.016	.004	.008	.016						
	N1	Wrought Aluminum Ex. 1000, 2017, 2025, 5050, 7050	60-90		<520	6900	5400	3600	6900	5400	3600						
N	N2	Low-Silicon Aluminum Alloys (Si < 12.2%) Ex. 2024, 6061, 7075	70-100		<350	1640	985	655	1640	985	655						
Non- Ferrous	N3	High-Silicon Aluminum Alloys (Si > 12.2%)	60-120		200-320	985	655	400	985	655	400						
	N4	Copper and Copper Alloys Ex. C81500	60-200		200-650	1280	1050	885	1280	1050	885						
								Rec	omme	nded	Starti	na Sne	eeds v	c (ft/n	nin)		
	Matarial		Brinell	Rockwell	Tensile		GS3115			- Indea	o car cii	ng Opt		45 V _C (12/11111)			
IS0	Material Group	Workpiece Material	Hardness HB	Hardness HRC	Strength MPa		(inch/re										
						.004	.008	.012									
	S1	Iron-Based Heat-Resistant Alloys Ex. A286, A608, INCOLOY 800 Series, N-155, Haynes 556, Discaloy	160-260	25-48	500-1200	330	280	230									
S High	S2	Cobalt-Based Heat-Resistant Alloys Ex. Haynes 25 (L605), Haynes 188, Stellite, MAR-M302, MAR-M509	250-450	25-48	1000-1450	260	215	165									
Temp Alloys	S 3	Nickel-Based Heat-Resistant Alloys Ex. Astroloy, Hastelloy X, INCONEL 600 and 700 Series, Waspalloy	160-450	<48	600-1700	200	150	115									
	S4	Titanium and Titanium Alloys Ex. Commercially Pure Ti, Ti-5AI-2.5Sn, Ti-6AI-4V, Ti-3AI-8V-6Cr-4Zr-4Mo	300-400	33-48	900-1600	-	-	-									

GRADES FOR GENERAL TURNING

Grade / Application Area Description Microstructure **GP1105** "First Choice" for Super-Finishing Applications in Steel (ISO P Materials). Outstanding combination of deformation-resistance and insert edge strength. Gradient-sintered high-performance **Super-Finishing** cemented carbide substrate with unsurpassed wear resistance. to Finishing Double-Coated MT-CVD Grade with TiCN and Al₂O₂ layers. Exceptional coating adhesion properties. Withstands elevated STEEL operating temperatures. **GP1115** "First Choice" for Finishing Applications in Steel (ISO P Materials). Triple-Coated MT-CVD Grade with Superfine TiCN, Thick Al₂O₃, and Ultra-Smooth TiN. Gradient-sintered high Finishing and performance cemented carbide substrate with very high wear Semi-finishing resistance. Performs extremely well in continuous cutting conditions and stable set-ups. **STEEL** "First Choice" for Medium Turning Applications in Steel (ISO P **GP1225** Materials). Triple-Coated MT-CVD Grade with Superthick TiCN, Optimized Al₂O₂, and Ultra-Smooth TiN. Gradient-sintered all-round performance cemented carbide substrate with Semi-finishing to excellent balance of wear resistance and toughness. Covers a **Light Roughing** wide application range, from semi-finishing to light roughing of Steels and continuous cutting to moderate interruptions. Also **STEEL** recommended for workpieces with scale. **GP1135** "First Choice" for difficult Roughing Applications in Steel (ISO P Materials). Superior fracture toughness and wear resistance. MT-CVD Triple-Layer Coating with smooth surface **Medium Machining** and excellent fracture resistance. Gradient-sintered high to Roughing performance cemented carbide substrate with exceptional toughness properties. Well suited for medium to heavy interrupted cuts and other unstable application conditions. **STEEL GP3125** Universal Turning Grade. Primary application in Steel, with wide performance range in multiple materials. TiAIN Nano-Structure PVD Coated grade. Sub-Micron carbide substrate Finishing to with outstanding combination of wear resistance and **Light Roughing** toughness behavior. Excellent Choice for All-Round grade that performs in an extremely wide variety of workpiece materials. P M K **GS3115** "First Choice" Grade for Finishing Applications in Stainless Steel (ISO M Materials). Also suitable for finish turning iron-based, cobalt-based and nickel-based Heat Resistant **Super-Finishing** Super Alloys. PVD Advanced TiAIN Coated Grade with superior to Finishing heat-resistance and oxidation-resistance properties. Extremely hard deformation-resistant micro-grain cemented carbide substrate with exceptional wear resistance characteristics. M STAINLESS STEEL

GRADES FOR GENERAL TURNING

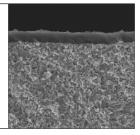

Grade / Application Area Description Microstructure

GM1125

Finishing to Medium Machining

M STAINLESS STEEL

"First Choice" Grade for Stainless Steel (ISO M Materials). Double-Coated MT-CVD Grade with outstanding adhesion of Superthick TiCN and Ultra-Smooth TiN. Gradient-sintered tough cemented carbide substrate with excellent wear resistance - even at elevated cutting speeds. Optimized for Stainless Steel machining including light interruptions.

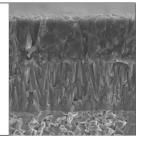


GM3125

Semi-finishing to Roughing

M STAINLESS STEEL

TiAIN Nano-Structure PVD Coated grade on Superfine Sub-Micron carbide substrate - exceptional resistance to thermal and mechanical shock with very good wear resistance. Excellent Choice for Stainless Steel applications at moderate cutting speeds, continuous cutting to moderate interruptions.

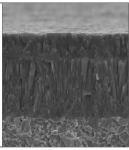


GK1115

Finishing and Semi-finishing

CAST IRON

"First Choice" for Finishing Applications in Cast Iron (ISO K Materials). Double-Coated MT-CVD Grade, Thick TiCN and Superthick Al₂O₃ on gradient-sintered high performance cemented carbide substrate. Unique "post-coating treatment" provides smoother cutting zone interface for extremely high wear resistance. Performs very well in continuous cutting conditions and stable set-ups.

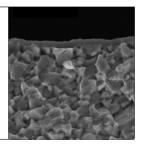


GK1125

Semi-finishing to Roughing

CAST IRON

"First Choice" for Medium Turning Applications in Cast Iron (ISO K Materials). Double-Coated MT-CVD Grade, Superthick TiCN and Thick ${\rm Al_2O_3}$. Gradient-sintered cemented carbide substrate with high wear resistance and superior toughness behavior. Covers a wide application range, from semi-finishing to roughing of Cast Iron - and continuous cutting to heavy interruptions. Performs well in poor machining conditions / on demanding castings.

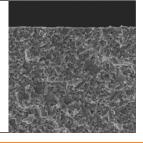


GN3125

Semi-finishing to Roughing

N NON-FERROUS

PVD TiBC Coating paired with High Hardness and Wear Resistant Sub-Micron cemented carbide substrate developed specifically for Aluminum Alloys and other non-ferrous materials within the ISO N Material range. Extremely smooth top coating layer results in reduced surface friction and smooth chip flow. Also suitable for non-metallics.

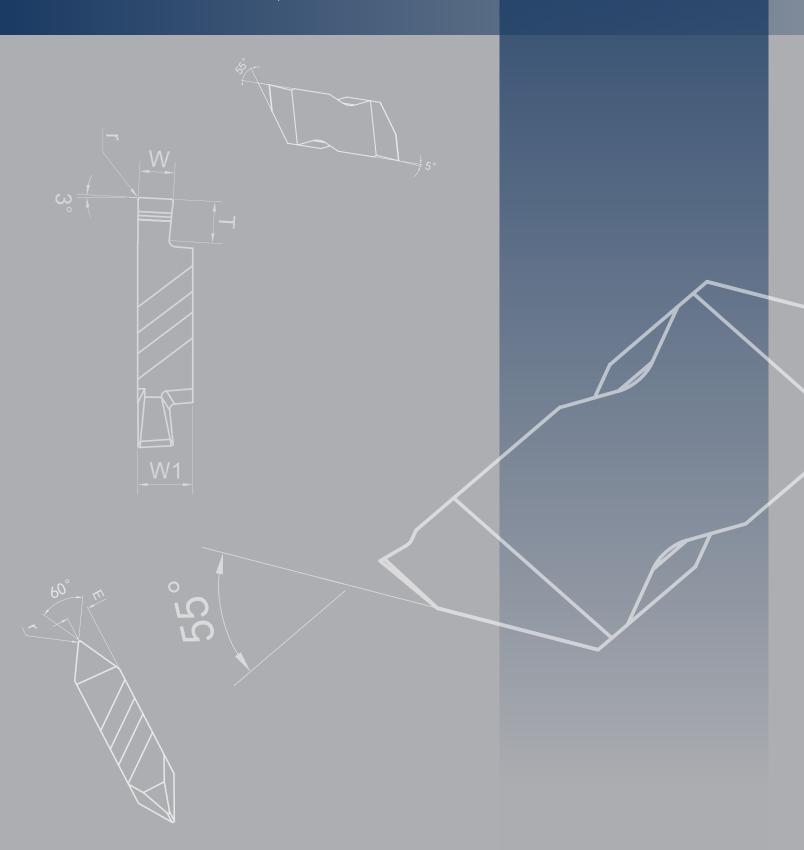


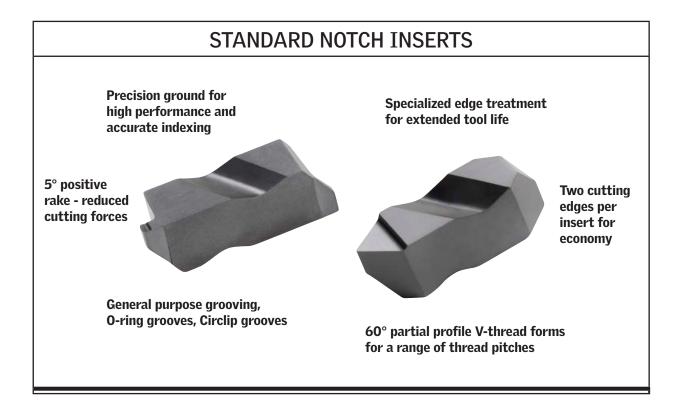
GN9125

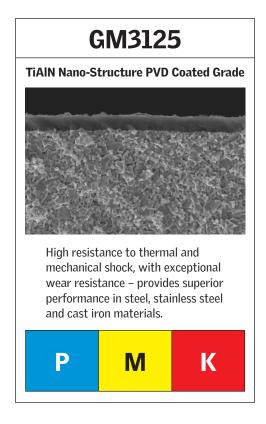
Semi-finishing to Roughing

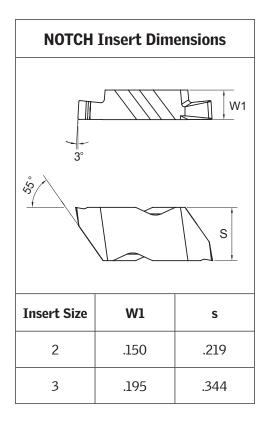
N NON-FERROUS

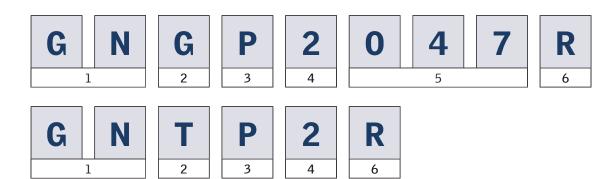
Uncoated Sub-Micron cemented carbide grade. High Hardness and Wear Resistance grade developed specifically for Aluminum Alloys and other non-ferrous materials within the ISO N Material range. Also suitable for non-metallics.

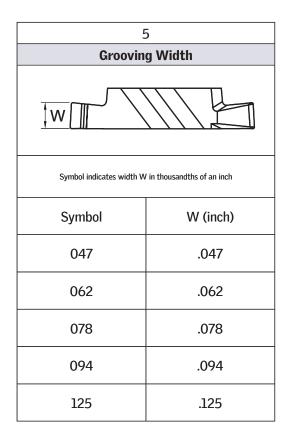



	REMEDY											
WEAR MECHANISM / PROBLEM	Increase the cutting speed	Reduce the cutting speed	Increase the feed	Reduce the feed	Increase the depth of cut	Reduce the depth of cut	Ensure adequate coolant flow	Choose a tougher grade	Select a more wear resistant grade	Choose a positive geometry	Use a smaller nose radius	
Excessive flank wear												
Chipping												
Plastic deformation												
Crater wear												
Built-up-edge (BUE)												
Thermal cracks												
Notch wear												
Insert Breakage												
Vibrations												
Chip control / long, unbroken chips												
	Increase the cutting speed	Reduce the cutting speed	Increase the feed	Reduce the feed	Increase the depth of cut	Reduce the depth of cut	Ensure adequate coolant flow	Choose a tougher grade	Select a more wear resistant grade	Choose a positive geometry	Use a smaller nose radius	
					RI	EME	ΟY					


GROOVING INSERTS | POSITIVE RAKE THREADING INSERTS | POSITIVE RAKE


STANDARD NOTCH INSERTS FOR GROOVING AND THREADING

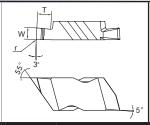




1						
Insert Type						
GN	NOTCH System					

	3			
Insert Characteristics				
Р	Positive Rake			

	2
	Insert Style
G	Grooving
Т	Threading - 60° V-form


	4				
Insert Size					
2	Notch size 2				
3	Notch size 3				

	6				
Hand of Insert					
R	Right-hand				
L	Left-hand				

GNGP

Precision ground, positive rake Notch inserts for a wide range of grooving applications.

5° positive rake for improved cutting action and reduced cutting forces.

CATALOG NUMBER		INSERT	DIMENSIONS (INCH)			CUTTING D	Р	M	К	
0711712001	ON THE CONTROL TO THE CONTROL THE CONTROL TO THE CONTROL TO THE CONTROL TO THE CONTROL TO THE CO		W	т	r	depth of	feed per	MULTI-MATERIAL		
RIGHT HAND	LEFT HAND		• • •	'	'	cut, a _p	rev, f _n	GM3125		
GNGP 2047R	GNGP 2047L	2	.047	.050	.004	max .050	.001005		*	
GNGP 2062R	GNGP 2062L	2	.062	.110	.008	max .110	.001006		*	
GNGP 2078R	GNGP 2078L	2	.078	.110	.008	max .110	.002008		*	
GNGP 2094R	GNGP 2094L	2	.094	.110	.008	max .110	.002008		*	
GNGP 2125R	GNGP 2125L	2	.125	.110	.008	max .110	.003010		*	
GNGP 3047R	GNGP 3047L	3	.047	.075	.008	max .075	.001006		*	
GNGP 3062R	GNGP 3062L	3	.062	.094	.008	max .094	.001006		*	
GNGP 3078R	GNGP 3078L	3	.078	.094	.008	max .094	.002008		*	
GNGP 3094R	GNGP 3094L	3	.094	.150	.008	max .150	.002008		*	
GNGP 3125R	GNGP 3125L	3	.125	.150	.008	max .150	.003010		*	

Ordering Example: 20 pcs GNGP 3125R GM3125

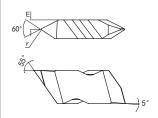
NOTE: Right-hand insert shown; Left-hand mirror image.

INSERT COMPATIBILITY

Notch GNGP grooving inserts are interchangeable with other Notch grooving inserts, and also fit tools using the following insert types:

NG, NGP, NG-K FLG, FLGP, FLG-CB TLG, TLGP

DEL	ED	CE	DΛ	CE	C


GRADE INFORMATION 72 TECHNICAL INFORMATION 72 CUTTING SPEED RECOMMENDATIONS

76

GNTP

Precision ground, positive rake Notch inserts for 60° partial profile (non-cresting) V-thread forms across a range of materials.

5° positive rake for improved cutting action and reduced cutting forces.

		_							_	
CATALOG NUMBER		DIMENSIONS (INCH)					Р	M	K	
·	SIZE	_		TI	PΙ	m	m	MUL	TI-MAT	ERIAL
LEFT HAND			r	EXTERNAL	INTERNAL	EXTERNAL	INTERNAL	(3M312	25
GNTP 2L	2	.075	.004	36 - 8	20 - 7	0.70 - 3.00	1.25 - 3.50		*	
GNTP 3L	3	.098	.007	20 - 6	12 - 5	1.25 - 4.00	2.00 - 5.00		*	
	LEFT HAND GNTP 2L	LEFT HAND GNTP 2L 2	NUMBER INSERT SIZE LEFT HAND GNTP 2L 2 .075	NUMBER INSERT SIZE LEFT HAND ROTTP 2L 2 DIMENSIONS (INCH) E r .004	NUMBER INSERT SIZEDIMENSIONS (INCH)THRE PERLEFT HAND $\frac{1}{2}$ $\frac{1}{2}$ GNTP 2L2.075.00436 - 8	NUMBER INSERT SIZEDIMENSIONS (INCH)THREADS PER INCHLEFT HAND E TITErExternalINTERNALGNTP 2L2.075.00436 - 820 - 7	NUMBER INSERT SIZE DIMENSIONS (INCH) THREADS PER INCH <	NUMBER SIZE $INSERT$ SIZEDIMENSIONS (INCH)THREADS PER INCHTHREAD PITCHLEFT HAND $INTERNAL$ $INTERNAL$ $INTERNAL$ $INTERNAL$ GNTP 2L2.075.00436 - 820 - 70.70 - 3.001.25 - 3.50	NUMBER SINSERT SIZE DIMENSIONS (INCH) THREADS PER INCH THREAD PITCH P LEFT HAND E r External INTERNAL EXTERNAL INTERNAL (INTERNAL OF TRANSIONS) MULT GNTP 2L 2 .075 .004 36 - 8 20 - 7 0.70 - 3.00 1.25 - 3.50	NUMBER SIZE INSERT SIZE DIMENSIONS (INCH) THREADS PER INCH THREAD PITCH P M LEFT HAND E r TPI mm MULTI-MAT GM312 GNTP 2L 2 .075 .004 36 - 8 20 - 7 0.70 - 3.00 1.25 - 3.50 ★

Ordering Example: 20 pcs GNTP 3R GM3125 **NOTE:** Right-hand insert shown; Left-hand mirror image.

INSERT COMPATIBILITY

Notch GNTP threading inserts are interchangeable with other Notch threading inserts, and also fit tools using the following insert types:

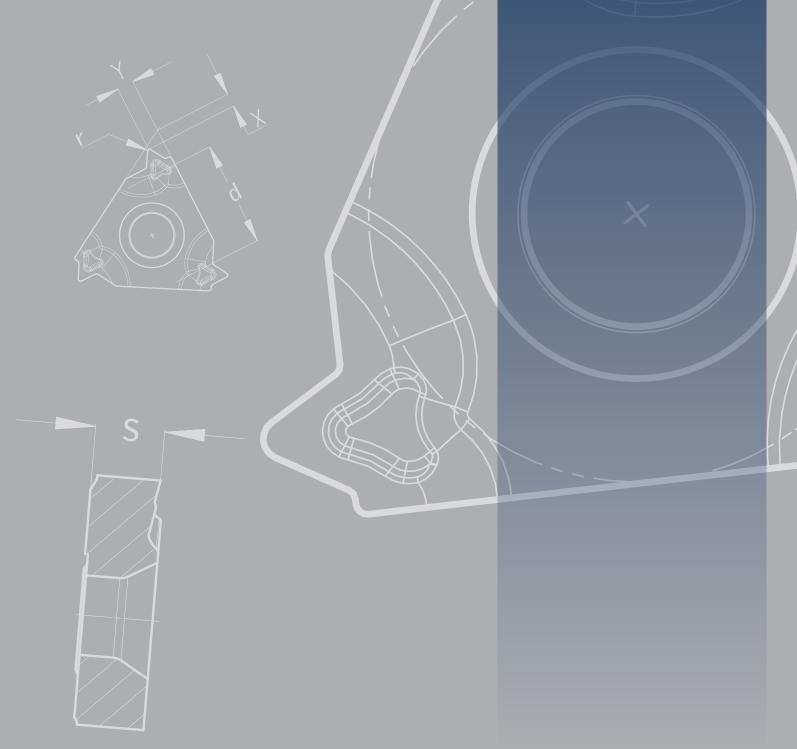
NT, NTP, NT-K FLT, FLTP, FLT-CB TLT, TLTP

GRADE INFORMATION 72 TECHNICAL INFORMATION

72

CUTTING SPEED RECOMMENDATIONS

76

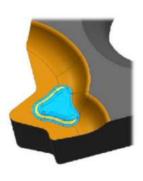


CUTTING SPEEDS | NOTCH INSERTS

							Reco	mmeno	led Sta	artina :	Speeds	ve (ft	/min)	
	Metavial		Brinell	Rockwell	Tensile	Recommended Starting Speeds v _C (ft/n								
IS0	Material Group	Workpiece Material	Hardness HB	Hardness HRC	Strength MPa		(inch/re							
				10		.003	.006	.010			Γ			
	PO	Low-Carbon Steels, Long Chipping (C < .25%) Ex. A36, 1008, 1010, 1018, 1108, 1117	<125		<530	600	510	420						
	P1	Low-Carbon Steels, Short Chipping, Free Machining (C < .25%) Ex. 10L18, 1200 Series, 1213, 12L14	<125		<530	520	450	390						
	P2	Medium- and High-Carbon Steels (C > .25%) Ex. 1035, 1045, 10L45, 1080, 1137, 1144, 1525, 1572	<220	<25	>530	440	390	330						
P	Р3	Alloy Steels and Tool Steels (C > .25%) Ex. P20, 1300, 2000, 3000, 4000, 5000, 8000, SAE A, D, H, O, S, M, T	<330	<35	600-850	350	300	250						
	P4	High-Strength Alloy Steels and Tool Steels (C > .25%) Ex. P20, 1300, 2000, 3000, 4000, 5000, 8000, SAE A, D, H, O, S, M, T	340-450	35-48	850-1400	300	250	200						
	P5	Ferritic, Martensitic and PH Stainless Steels Ex. 13-8 PH, 15-5 PH, 17-4 PH, 400 and 500 Series	<330	<35	600-900	360	310	260						
	P6	High-Strength Ferritic, Martensitic and PH Stainless Steels Ex. 13-8 PH, 15-5 PH, 17-4 PH, 400 and 500 Series	340-450	35-48	900-1350	280	230	200						
	M1	Austenitic Stainless Steels Ex. 200 Series, 301, 302, 304, 304L, 309	130-200		<600	400	330	260						
M Stainless Steel	M2	High-Strength Austenitic Stainless and Cast Stainless Steels Ex. 310, 316, 316L, 321, 347, 384	150-230	<25	600-800	360	300	230						
	M3	Duplex Stainless Steels Ex. 323, 329, F55, 2205	135-275	<30	<800	320	260	200						
	К1	Gray Cast Iron Ex. Class 20, 25, 30, 35, 40, 45, 50, 55, 60, G1800, G3000, G3500, G4000	120-290	<32	125-500	630	510	390						
K Cast Iron	К2	Ductile Cast Irons (Nodular Irons) and Compacted Graphite Irons (CGI) Ex 60-40-18, 65-45-12, 80-55-06, SAE J434: D4018, D4512, D5506	130-260	<28	<600	470	380	290						
	К3	High-Strength Ductile Irons and Austempered Ductile Irons (ADI) Ex. ASTM A536: 100-70-03, 120-90-02, SAE J434: D7003	180-350	<43	>600	380	310	230	1					

LAYDOWN THREADING INSERTS

STANDARD INSERTS
FOR THREAD TURNING


STANDARD THREAD TURNING INSERTS

Standard insert sizes 11, 16 and 22

Inserts for External and Internal applications


TC chipbreaker

- · Superior chip control
- Reduced cutting forces
- Large chip space promotes smooth chip evacuation

GM3225

TiAIN Nano-Structure PVD Coated Grade

Optimized coating with gradient-sintered tough cemented carbide substrate provides superior wear resistance and exceptional performance for thread turning across a broad range of materials.

16
1

2

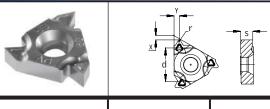
R

A4

55

1						
Insert Size						
Size	iC					
11	.250					
16	.375					
22	.500					

2						
Insert Type						
Е	External					
I	Internal					

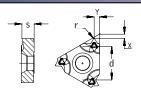

3						
Hand of Insert						
R	Right-hand					

	4	
	Pitch	
	Partial Profile	
Designation	TPI	mm
А	48 - 16	0.5 - 1.5
AG	48 - 8	0.5 - 3.0
G	14 - 8	1.75 - 3.0
N	7 - 5	3.5 - 5.0

	5
	Thread Form
55	Partial Profile 55°
60	Partial Profile 60°

PARTIAL PROFILE 60° - EXTERNAL

Standard inserts for 60° partial profile (non-cresting) V-thread forms across a range of materials. Three cutting edges for economy.


Special chipbreaker design with low cutting forces and superior chip control. Large chip space promotes smooth chip evacuation.

	THREADS	THREAD						N	/IULTI-N	1ATERIA	L
CATALOG	PER INCH	PITCH		IMEN	SIONS	(INC	1)	Р	M	K	S
NUMBER 16ER-A60-TC	TPI	mm	d	s	r	х	Υ		GM	3225	
16ER-A60-TC	48 - 16	0.50 - 1.50	3/8	.137	.003	.031	.035		7	t	
16ER-AG60-TC	48 - 8	0.50 - 3.00	3/8	.137	.003	.043	.059		7	+	
16ER-G60-TC	14 - 8	1.75 - 3.00		.137	.010	.047	.067		7	+	
22ER-N60-TC	7 - 5	3.50 - 5.00	1/2	.185	.020	.067	.098		7	+	

Ordering Example: 20 pcs 22ER-N60-TC GM3225

PARTIAL PROFILE 60° - INTERNAL

Standard inserts for 60° partial profile (non-cresting) V-thread forms across a range of materials. Three cutting edges for economy.

Special chipbreaker design with low cutting forces and superior chip control. Large chip space promotes smooth chip evacuation.

	THREADS	THREAD						١	/IULTI-N	1ATERIA	.L
CATALOG	PER INCH	PITCH		IMEN	SIONS	(INC	1)	Р	M	K	S
NUMBER 11IR-A60-TC	TPI	mm	d	s	r	Х	Υ		GM	3225	
11IR-A60-TC	48 - 16	0.50 - 1.50	1/4	.118	.003	.031	.035				
16IR-A60-TC	48 - 16	0.50 - 1.50	3/8	.137	.003	.031	.035		7	+	
16IR-AG60-TC	48 - 8	0.50 - 3.00	3/8	.137	.003	.043	.059		7	+	
16IR-G60-TC	14 - 8	1.75 - 3.00		.137	.005	.047	.067		7	+	
22IR-N60-TC	7 - 5	3.50 - 5.00	1/2	.185	.010	.067	.098		7	ł .	

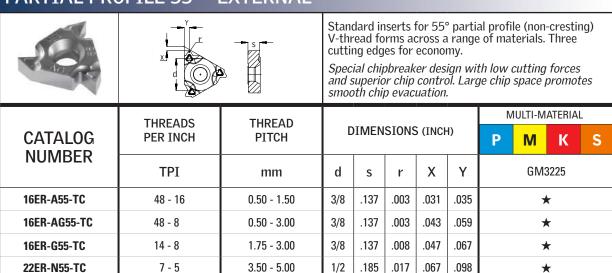
Ordering Example: 20 pcs 22IR-N60-TC GM3225

FULL PROFILE INSERTS

Many full profile thread turning inserts are also available, including the forms below. Ask for details.

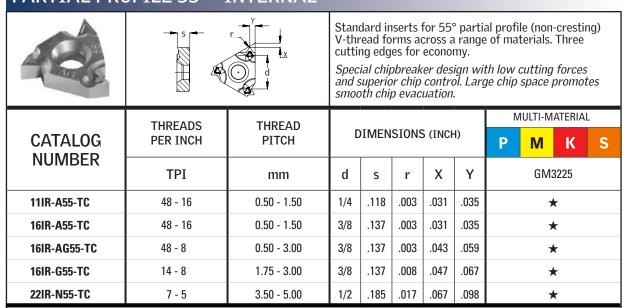
ISO - ISO Metric 60°

UN - Unified National Fixed Pitch (Inch UN 60°)


NPT - National Pipe Taper

BSPT - British Standard Pipe Taper

W - Whitworth



PARTIAL PROFILE 55° - EXTERNAL

Ordering Example: 20 pcs 22ER-N55-TC GM3225

PARTIAL PROFILE 55° - INTERNAL

Ordering Example: 20 pcs 22IR-N55-TC GM3225

FULL PROFILE INSERTS

Many full profile thread turning inserts are also available, including the forms below. Ask for details.

ISO – ISO Metric 60°

UN - Unified National Fixed Pitch (Inch UN 60°)

NPT - National Pipe Taper

BSPT – British Standard Pipe Taper

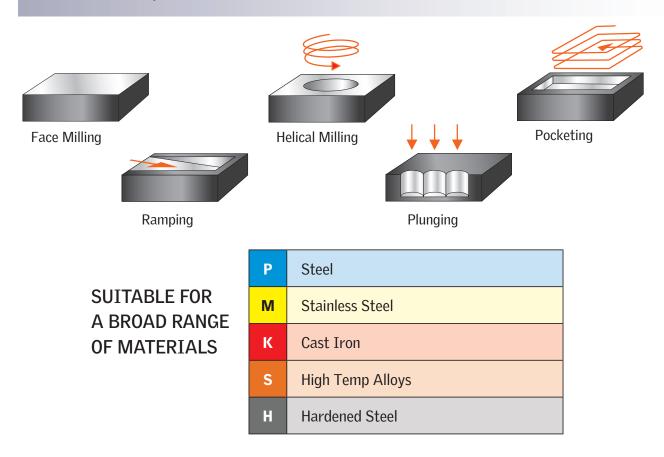
W - Whitworth

			Brinell	Rockwell	Tensile			Rec	omme	nded	Starti	ng Spo	eeds v	c (ft/r	nin)	
IS0	Material Group	Workpiece Material	Hardness			-	GM322!	5								
			1115	TIKC	IVIFA	low	start	high								
	PO	Low-Carbon Steels, Long Chipping (C < .25%) Ex. A36, 1008, 1010, 1018, 1108, 1117	<125		<530	390	560	760								
	P1	Low-Carbon Steels, Short Chipping, Free Machining (C < .25%) Ex. 10L18, 1200 Series, 1213, 12L14	<125		<530	330	490	640								
	P2	Medium- and High-Carbon Steels (C > .25%) Ex. 1035, 1045, 10L45, 1080, 1137, 1144, 1525, 1572	<220	<25	>530	300	440	580								
P Steel	Р3	Alloy Steels and Tool Steels (C > .25%) Ex. P20, 1300, 2000, 3000, 4000, 5000, 8000, SAE A, D, H, O, S, M, T	<330	<35	600-850	250	330	460								
	P4	High-Strength Alloy Steels and Tool Steels (C > .25%) Ex. P20, 1300, 2000, 3000, 4000, 5000, 8000, SAE A, D, H, O, S, M, T	340-450	35-48	850-1400	160	270	360								
	P5	Ferritic, Martensitic and PH Stainless Steels Ex. 13-8 PH, 15-5 PH, 17-4 PH, 400 and 500 Series	<330	<35	600-900	260	400	540								
	P6	High-Strength Ferritic, Martensitic and PH Stainless Steels Ex. 13-8 PH, 15-5 PH, 17-4 PH, 400 and 500 Series	340-450	35-48	900-1350	140	180	260								

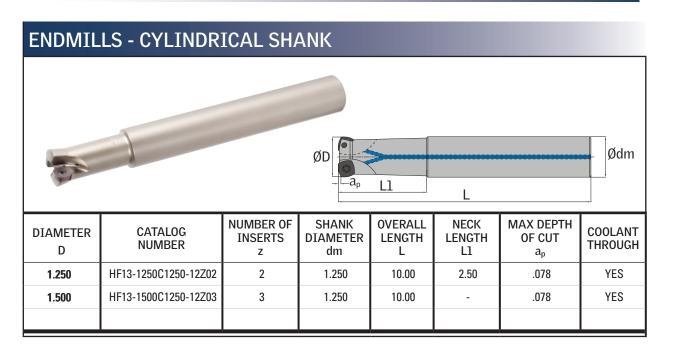
			Brinell	Rockwell	Tensile			Rec	omme	nded	Starti	ng Spe	eds v	c (ft/r	nin)	
IS0	Material Group	Workpiece Material		Hardness HRC		(GM322!	5								
			TID	TIKC	IVIFA	low	start	high								
	M1	Austenitic Stainless Steels Ex. 200 Series, 301, 302, 304, 304L, 309	130-200		<600	240	360	470								
M Stainless Steel	M2	High-Strength Austenitic Stainless and Cast Stainless Steels Ex. 310, 316, 316L, 321, 347, 384	150-230	<25	600-800	205	310	410								
	M3	Duplex Stainless Steels Ex. 323, 329, F55, 2205	135-275	<30	<800	180	270	360								

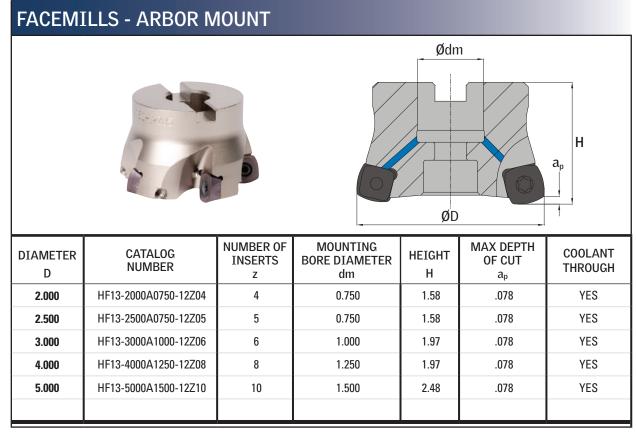
			Brinell	Rockwell	Tensile			Rec	omme	nded	Starti	ng Spo	eeds v	c (ft/r	nin)	
IS0	Material Group	Workpiece Material	Hardness	Hardness	Strength	(GM322!	5								
			ПБ	пкс	IVIPa	low	start	high								
	K1	Gray Cast Iron Ex. Class 20, 25, 30, 35, 40, 45, 50, 55, 60, G1800, G3000, G3500, G4000	120-290	<32	125-500	260	350	490								
K Cast Iron	К2	Ductile Cast Irons (Nodular Irons) and Compacted Graphite Irons (CGI) Ex. 60-40-18, 65-45-12, 80-55-06, SAE J434: D4018, D4512, D5506	130-260	<28	<600	220	300	400								
	КЗ	High-Strength Ductile Irons and Austempered Ductile Irons (ADI) Ex. ASTM A536: 100-70-03; 120-90-02, SAE J434: D7003	180-350	<43	>600	200	260	320								

			Brinell	Rockwell	Tensile			Rec	omme	nded	Starti	ng Spe	eeds v	c (ft/n	nin)	
IS0	Material Group	Workpiece Material	Hardness	Hardness	Strength	(GM322	5								
			ПБ	пкс	IVIPa	low	start	high								
	S1	Iron-Based Heat-Resistant Alloys Ex. A286, A608, INCOLOY 800 Series, N-155, Haynes 556, Discaloy	160-260	25-48	500-1200	90	130	180								
S	S2	Cobalt-Based Heat-Resistant Alloys Ex. Haynes 25 (L605), Haynes 188, Stellite, MAR-M302, MAR-M509	250-450	25-48	1000-1450	60	80	100								
Temp Alloys	S3	Nickel-Based Heat-Resistant Alloys Ex. Astroloy, Hastelloy X, INCONEL 600 and 700 Series, Waspalloy	160-450	<48	600-1700	45	60	80								
	S4	Titanium and Titanium Alloys Ex. Commercially Pure Ti, Ti-5Al-2.5Sn, Ti-6Al-4V, Ti-3Al-8V-6Cr-4Zr-4Mo	300-400	33-48	900-1600	165	200	230								


MILLING

High Feed Milling Solutions 86 Standard Milling Inserts 95


HIGH FEED MILLING SOLUTIONS



VERSATILITY | HIGH PERFORMANCE IN A VARIETY OF APPLICATIONS

Ordering Example: 2 pcs HF13-5000A1500-12Z10

NOTE: All cutters are delivered with insert mounting screws and a wrench. Inserts are ordered separately - see page 88. See page 93 for Spare Parts information.

HIGH FEED MILLING Versatile inserts for high feed facemilling, plunging, ramping and pocketing applications. Thick, strong inserts with four cutting edges for maximum economy. SDMT GM: Medium machining with lower cutting forces GH: Roughing with highest edge security DIMENSIONS (INCH) MULTI-MATERIAL M APPLICATION **CATALOG** GA4230 3M2140 GA4225 **ITEM** 3P2115 3S4130 **NUMBER** S r MEDIUM **SDMT 120512-GM** .500 .219 .047 \star \star \star \star HEAVY **SDMT 120512-GH** .219 .047 .500 \star \star

Ordering Example: 20 pcs SDMT 120512-GH GA4230

GRADE INFORMATION

GA4230 P M K S H

Universal, first-choice grade with broad application range. PVD TiAIN+ coating with excellent heat and oxidation resistance characteristics.

GA4225 P M K

Complementary grade for steel, stainless steel and cast iron materials. PVD AlCrN coating with high hardness substrate offers increased wear resistance.

GP2115 P

Best for steel machining with stable set-ups. MT-CVD dual layer TiCN and Al_2O_3 coating with extremely hard substrate offers high wear resistance.

GM2140 M

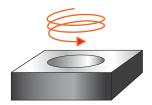
Outstanding performance in austenitic and ferritic, martensitic and PH stainless steels. MT-CVD coated grade with secondary application in titanium and HRSA materials.

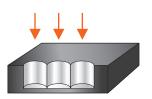
GS4130 S

Primary application in titanium and iron-based, cobalt-based and nickel-based heat resistant alloys. Latest PVD TiAIN coating technology with complementary use in stainless steels.

REFERENCE PAGES

MILLING CUTTERS 87 FEED RECOMMENDATIONS 89 CUTTING SPEED RECOMMENDATIONS 90


HIGH FEED MILLING / FEED VALUES


IS0	Workpiece Material	Rockwell Hardness	Recommended feed starting	
150	Tro Apiece Indeerida	HRC	GM (medium)	GH (heavy)
	Low-Carbon Steel	<25	.045 (.030060)	.060 (.040080)
P Steel	Alloy Steel and Tool Steel	<35	.045 (.030060)	.060 (.040080)
	Alloy Steel and Tool Steel	35 - 45	.035 (.025050)	.045 (.030060)
M Stainless Steel	Stainless Steel	<35	.030 (.025040)	.040 (.030050)
K Cast Iron	Cast Iron	<35	.045 (.030060)	.060 (.040080)
S High-Temp Alloys	Heat-Resistant and Titanium Alloys	<35	.015 (.006024)	.020 (.008036)
H Hardened Steel	Alloy Steel and Tool Steel	45 - 55	.010 (.004020)	.015 (.006030)

RECOMMENDED STARTING FEED VALUES		depth of cut	a _p (inches)	
RELATIVE TO DEPTH OF CUT	.020	.040	.060	.078
Recommended feed per insert f _z (inches) starting (range)	.070 (.060080)	.060 (.040070)	.040 (.025060)	.030 (.015040)

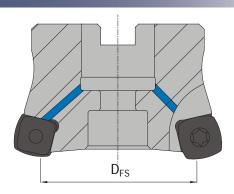
OTHER APPLICATIONS

See pages 92 and 93 for feed recommendations for ramping, helical milling and plunging applications.

CUTTING SPEEDS / HIGH FEED MILLING

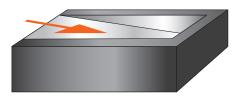
								Re	ecomm	ended	Startir	ıg Spe	eds v _c	(ft/min	n)		
IS0	Material	Workpiece Material		Rockwell Hardness			GP2115			GA4225	j		GA4230)	(GM2140)
130	Group	Workpiece Material	HB	HRC	MPa		f _z (inch)			f _z (inch)			f _z (inch)			f _z (inch)	
						.035	.050	.065	.035	.050	.065	.035	.050	.065	.030	.045	.055
	PO	Low-Carbon Steels, Long Chipping (C < .25%) Ex. A36, 1008, 1010, 1018, 1108, 1117	<125		<530	840	720	580	760	650	525	720	620	500			
	P1	Low-Carbon Steels, Short Chipping, Free Machining (C < .25%) Ex. 10L18, 1200 Series, 1213, 12L14	<125		<530	760	620	490	690	560	440	655	530	420			
	P2	Medium- and High-Carbon Steels (C > .25%) Ex 1035, 1045, 10L45, 1080, 1137, 1144, 1525, 1572	<220	<25	>530	680	590	475	620	535	430	590	510	410			
P	Р3	Alloy Steels and Tool Steels (C > .25%) Ex. P20, 1300, 2000, 3000, 4000, 5000, 8000, SAE A, D, H, O, S, M, T	<330	<35	600-850	560	450	360	510	410	325	480	390	310			
	P4	High-Strength Alloy Steels and Tool Steels (C > .25%) Ex P20, 1300, 2000, 3000, 4000, 5000, 8000, SAE A, D, H, O, S, M, T	340-450	35-48	850- 1400	420	335	265	380	305	240	360	290	230			
	P5	Ferritic, Martensitic and PH Stainless Steels Ex. 13-8 PH, 15-5 PH, 17-4 PH, 400 and 500 Series	<330	<35	600-900				605	525	420	575	500	400	545	475	380
	Р6	High-Strength Ferritic, Martensitic and PH Stainless Steels Ex. 13-8 PH, 15-5 PH, 17-4 PH, 400 and 500 Series	340-450	35-48	900- 1350				440	360	285	420	340	270	400	325	255

								Re	ecomm	ended	Startin	ıg Spe	ds v _c (ft/mir	1)		
IS0	Material	Workpiece Material		Rockwell	Tensile Strength		GA4225			GA4230			GS4130		(GM2140)
130	Group	Workpiece Material	HB	HRC	MPa		f _z (inch)			f _z (inch)			f _z (inch)			f _z (inch)	
						.025	.035	.045	.025	.035	.045	.025	.035	.045	.025	.035	.045
	M1	Austenitic Stainless Steels Ex. 200 Series, 301, 302, 304, 304L, 309	130-200		<600	560	450	340	530	430	325	500	410	310	500	410	310
M Stainless Steel	M2	High-Strength Austenitic Stainless and Cast Stainless Steels Ex. 310, 316, 316L, 321, 347, 384	150-230	<25	600-800	510	410	310	480	390	295	455	370	280	455	370	280
	M3	Duplex Stainless Steels Ex. 323, 329, F55, 2205	135-275	<30	<800	450	360	275	425	345	260	400	325	245	400	325	245



CUTTING SPEEDS / HIGH FEED MILLING

		Recommended						dod St	ed Starting Speeds v _C (ft/min)						
			Brinell	Rockwell	Tensile		GA4225			GA4230		V _C (1L)	,,,,,,		
IS0	Material Group	Workpiece Material	Hardness HB	Hardness HRC	Strength MPa		f _z (inch)			f _z (inch)					
			5			.035	.050	.065	.035	.050	.065				
	К1	Gray Cast Iron Ex. Class 20, 25, 30, 35, 40, 45, 50, 55, 60, G1800, G3000, G3500, G4000	120-290	<32	125-500	690	560	440	655	530	420				
K Cast Iron	К2	Ductile Cast Irons (Nodular Irons) and Compacted Graphite Irons (CGI) Ex. 60-40-18, 65-45-12, 80-55-06, SAE J434: D4018, D4512, D5506	130-260	<28	<600	620	520	390	590	490	370				
	К3	High-Strength Ductile Irons and Austempered Ductile Irons (ADI) Ex. ASTM A536: 100-70-03, 120-90-02, SAE J434: D7003	180-350	<43	>600	550	470	360	525	450	345				
							Reco	mmen	ded Sta	arting 9	Speeds	v _c (ft/	/min)		
100	Material	Madada AA L LL	Brinell	Rockwell	Tensile		GA4230			GS4130		GM2140			
IS0	Group	Workpiece Material	Hardness HB	Hardness HRC	Strength MPa		f _z (inch)			f _z (inch)	1	f _z (inch)			
						.008	.016	.024	.008	.016	.024	.008	.016	.024	
	S1	Iron-Based Heat-Resistant Alloys Ex. A286, A608, INCOLOY 800 Series, N-155, Haynes 556, Discaloy	160-260	25-48	500-1200	200	130	100	190	120	90	190	120	90	
S	S2	Cobalt-Based Heat-Resistant Alloys Ex. Haynes 25 (L605), Haynes 188, Stellite, MAR-M302, MAR-M509	250-450	25-48	1000-1450	170	100	80	160	90	70	160	90	70	
High Temp Alloys	S 3	Nickel-Based Heat-Resistant Alloys Ex. Astroloy, Hastelloy X, INCONEL 600 and 700 Series, Waspalloy	160-450	<48	600-1700	180	110	90	170	100	80	170	100	80	
	S4	Titanium and Titanium Alloys Ex. Commercially Pure Ti, Ti-5Al-2.5Sn, Ti-6Al-4V, Ti-3Al-8V-6Cr-4Zr-4Mo	300-400	33-48	900-1600	190	120	95	180	110	85	180	110	85	
							Reco	mmen	ded Sta	arting S	Speeds	v _c (ft/	v _c (ft/min)		
	Material		Brinell	Rockwell	Tensile	GA4230					•				
IS0	Group	Workpiece Material	Hardness HB	Hardness HRC	Strength MPa		f _z (inch)								
						.006	.012	.020							
	H1	Hardened Alloy Steels and Tool Steels Ex. H13,D2, D3, 4340,P20		44-48		320	260	210							
н	H2	Hardened Alloy Steels and Tool Steels Ex. H13,D2, D3, 4340,P20		48-55		260	210	165							
Hardened Steels	Н3	Hardened Alloy Steels and Tool Steels Ex. H13,D2, D3, 4340,P20		56-60											
	H 4	Hardened Alloy Steels and Tool Steels Ex. H13,D2, D3, 4340,P20		>60											



WIDTH OF CUT FOR FLAT SURFACES

CUTTER DIAMETER	D _{FS}
1.250	0.53
1.500	0.78
2.000	1.28
2.500	1.78
3.000	2.28
4.000	3.28
5.000	4.28

RAMPING

FEED RECOMMENDATION

Reduce feed for ramping applications to 75% of normal value.

EXAMPLE: If the calculated face milling feed rate is 200 inches/min, reduce the feed rate for ramping to:

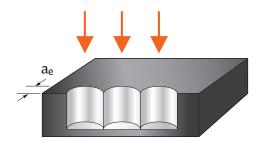
200 inches/min x 75% = 150 inches/min

CUTTER DIAMETER	MAX RAMPING ANGLE
1.250	1.8°
1.500	1.5°
2.000	1.2°
2.500	0.9°
3.000	0.8°
4.000	0.6°
5.000	0.4°

HELICAL MILLING

CUTTER DIAMETER	MINIMUM HOLE SIZE	MAXIMUM HOLE SIZE
1.250	1.71	2.42
1.500	2.21	2.92
2.000	3.21	3.92
2.500	4.21	4.92
3.000	5.21	5.92
4.000	7.21	7.92
5.000	9.21	9.92

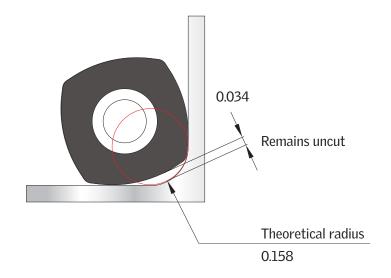
FEED RECOMMENDATION


Reduce feed for helical milling applications to 30% - 50% of normal value.

EXAMPLE: If the calculated face milling feed rate is 200 inches/min, reduce the feed rate for helical milling to a range of:

200 inches/min x 30% = 60 inches/min 200 inches/min x 50% = 100 inches/min

PLUNGE MILLING



Maximum width of cut $a_e = 0.330$

FEED RECOMMENDATION Recommended starting feed per insert fz = .006 (.002-.010)

PROGRAMMING INFORMATION

CAD/CAM systems require a defined theoretical radius value when programming pocketing applications (cavity machining). The theoretical radius value is noted on the drawing to the right, as well as the approximate amount of material that will remain uncut.

SPARE PARTS

INSERT SCREW	WRENCH
NS521	FWT15

Spindle speed, n (rpm)

$$n = \frac{3.82 \times v_c}{D}$$

Cutting speed, v_c (ft / min)

$$v_c = .262 \times D \times n$$

Feed rate, v_f (in / min)

$$v_f = n \times f_z \times z$$

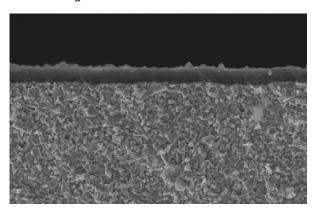
Feed per insert, f_z (in)

$$\mathbf{f_z} = \frac{\mathbf{v_f}}{\mathbf{n} \times \mathbf{z}}$$

Metal removal rate, Q (in³ / min)

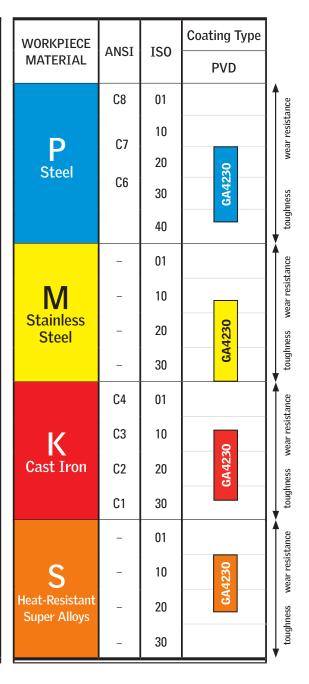
$$Q = a_e \times a_p \times v_f$$

Grade GA4230


Superior Milling Performance in a Wide Range of Applications

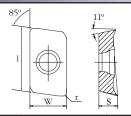
Outstanding results in Steels, Stainless Steels, Cast Iron and Heat-Resistant Super Alloys

Withstands difficult cutting conditions – varying depths of cut, weak and unstable setups, vibrations


GA4230 - Advanced Substrate Development

- Homogeneous submicron grain structure
- Specialized processing treatment provides exceptional fracture-resistant properties and superior wear resistance
- Stable performance under a wide range of machining conditions

GA4230 - Next Generation Coating Technology


- New TiAIN+ Advanced PVD Coating
- Outstanding wear resistance properties and long tool life through improved microstructure and surface treatment
- Increased adhesion strength to substrate provides predictable tool life and reliable performance
- Effective in HRSA's and other difficult-tomachine materials due to high heat resistance and oxidation resistance characteristics

SQUARE SHOULDER MILLING

APMT

Widely used inserts for square shoulder endmilling and facemilling applications. Two cutting edges with smooth free cutting action.

PL: Light cutting with lowest cutting forces

PM: Medium machining with broad application range

PR: Roughing with highest edge security

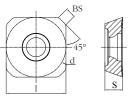
NOIL		CATALOC	DIM	IENSI(ONS (I	NCH)	CUTTING D	OATA (INCH)	P M K S		
APPLICATION	ITEM	CATALOG NUMBER	ı	W	S	r	depth of cut, a _p	feed per insert, f _z	MULTI-MATERIAL GA4230		
LIGHT		APMT 160408PDER-PL	.640	.364	.187	.031	max .551	.002006	*		
MEDIUM	0	APMT 160408PDER-PM	.640	.364	.187	.031	max .551	.003008	*		
MEDIUM	0	APMT 160416PDER-PM	.640	.364	.187	.063	max .551	.003008	*		
HEAVY		APMT 160408PDER-PR	.640	.364	.187	.031	max .551	.006012	*		

Ordering Example: 20 pcs APMT 160408PDER-PR GA4230

I	NSERT	COM	PAT:	IBIL:	[TY

APMT 1604 milling inserts are interchangeable with other APMT 1604 inserts, and also fit tools using the following insert types:

APKT 1604 APKT 263 APKX 1604 APMW 1604 APMX 1604


REFERENCE PAGES

GRADE INFORMATION 96 TECHNICAL INFORMATION 101 CUTTING SPEED RECOMMENDATIONS 104

45° FACEMILLING

SEET

Very popular facemilling inserts, commonly used on low powered machines and smaller machining centers. High positive rake angles and geometries. Four cutting edges for economy.

PL: Light cutting with lowest cutting forces

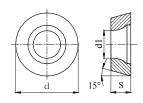
PM: Medium machining with broad application range

PH: Heavy cutting with highest edge security

LION		CATALOC	DIM	ENSI	ONS (I	NCH)	CUTTING D	ATA (INCH)	Р	M	К	S
APPLICATION	ITEM	CATALOG NUMBER	d	1	S	BS	depth of cut, a _p	*feed per insert, f _z	MULTI-MATER GA4230			ΆL
LIGHT	0	SEET 13T3AGEN-PL	.528	.528	.156	.067	max .240	.003008		7	*	
MEDIUM		SEET 13T3AGEN-PM	.528	.528	.156	.047	max .240	.004012		7	*	
HEAVY		SEET 13T3AGSN-PH	.528	.528	.156	.047	max .240	.006016		7	*	

Ordering Example: 20 pcs SEET 13T3AGSN-PH GA4230

*NOTE: Feed per insert (f2) values shown include feedrate multiplier to compensate for 45° lead angle chip thinning.


INSERT COMPATIBILITY									
SEET 13T3 ins	SEET 13T3 inserts are interchangeable with, and fit tools using, the following insert types:								
R245-12T3	SEET 13T3	SEGT 13T3	SEHT 13T3	SEKT 13T3	SEMT 13T3	SEPT 13T3			

		REFERENCE	PAGES		
GRADE INFORMATION	96	TECHNICAL INFORMATION	101	CUTTING SPEED RECOMMENDATIONS	104

PROFILE MILLING

RDET RDMW

Industry standard profiling inserts with high performance grade and geometries. 15° clearance angle for wide variety of common industry cutters. Excellent value and economy.

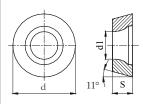
BL: Light cutting with lowest cutting forces

GM: Medium machining with broad application range

T-BM, T: Roughing with highest edge security

LION		CATALOG	DIME	NSIONS	(INCH)	CUTTING D	OATA (INCH)	Р	М	К	S
APPLICATION	ITEM	CATALOG NUMBER	d	dl	S	*depth of cut, a _p	*feed per insert, f _z	MULTI-MAT			1 L
LIGHT		RDET 1204M0-BL RDET 1604M0-BL	12mm 16mm	.173 .217	.187 .187	.118 .157	.003010 .004010		*		
MEDIUM	0	RDET 1204M0-GM RDET 1604M0-GM	12mm 16mm	.173 .217	.187 .187	.118 .157	.004012 .004014		*		
HEAVY	O	RDMW 1204M0T-BM	12mm	.173	.187	.118	.005015		*	T	
HEAVY	0	RDMW 1604M0T	16mm	.217	.187	.157	.006018		*	(
	_										

Ordering Example: 20 pcs RDMW 1604M0T GA4230


*NOTE: For general profiling applications the recommended maximum depth of cut noted is one-half the theoretical maximum depth of cut for the insert. Proper feedrates for round inserts are dependent on the depth of cut. The recommended feed values provided are for the depths of cut shown. For larger depths of cut decrease the feed; for smaller depths of cut increase the feed.

INSERT COMPATIBILITY										
RDET and RDMW 1204 and 1604 inserts fit cutters using the same insert descriptions, and also fit tools using the following insert types:										
RDEW RDEX		RDGT	DGT RDHT RDHW		RDHX	RDMT	RDPX			
	REFERENCE PAGES									
GRADE INFORMATION 96 TECHNICAL INFORMATION 101 CUTTING SPEED RECOMMENDATIONS						TIONS 104				

PROFILE MILLING

RPET RPMW

Industry standard profiling inserts with high performance grade and geometries. 11° clearance angle for broad range of common industry cutters. Excellent value and economy.

GL: Light cutting with lowest cutting forces

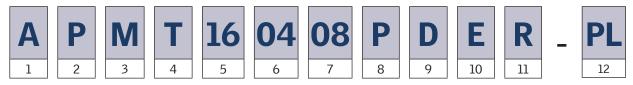
GM: Medium machining with broad application range

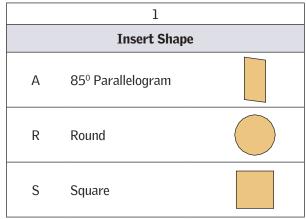
T: Roughing with highest edge security

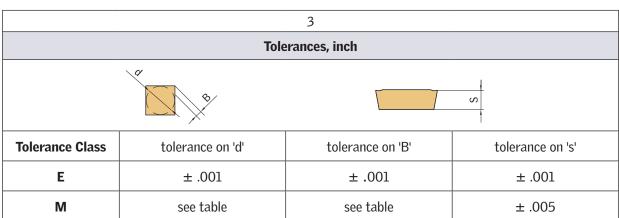
NOI			DIME	NSIONS (INCH)		CUTTING DATA (INCH)		P M K S
APPLICATION	ITEM	CATALOG NUMBER	d	d1	S	*depth of cut, a _p	*feed per insert, f _z	MULTI-MATERIAL GA4230
LIGHT		RPET 1204M0-GL	12mm	.173	.187	.118	.003010	*
MEDIUM		RPET 1204M0-GM	12mm	.173	.187	.118	.004012	*
НЕАVУ	0	RPMW 1204M0T	12mm	.173	.187	.118	.005015	*

Ordering Example: 20 pcs RPMW 1204M0T GA4230

*NOTE: For general profiling applications the recommended maximum depth of cut noted is one-half the theoretical maximum depth of cut for the insert. Proper feedrates for round inserts are dependent on the depth of cut. The recommended feed values provided are for the depths of cut shown. For larger depths of cut decrease the feed; for smaller depths of cut increase the feed.


INSERT COMPATIBILITY							
RPET and RPMW	RPET and RPMW 1204 inserts fit cutters using the same insert descriptions, and also fit tools using the following insert types:						
RPCT RPCW RPEW RPEX RPHT RPMT							


		REFERENCE	PAGES		
GRADE INFORMATION	96	TECHNICAL INFORMATION	101	CUTTING SPEED RECOMMENDATIONS	104



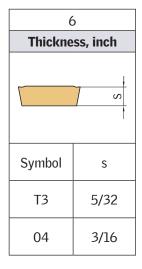
EXAMPLE 1

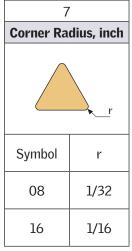
	2						
	Clearance Angle						
D	15º Positive Rake						
Е	20º Positive Rake						
Р	11º Positive Rake						

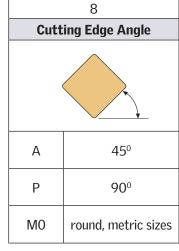
Tolerance Class M, inch							
d	tolerance on 'd'	tolerance on 'B'					
3/8 (10mm)	± .002	± .003					
1/2 (12mm)	± .003	± .005					
5/8 (16mm)	± .004	± .006					

	4	
	Insert Type	
Т	Screw-Down Clamping, Single-sided with Chipformer	Y Y Y
W	Screw-Down Clamping, Single-sided without Chipformer	
X	Manufacturer-Specific Design	

EXAMPLE 2







	5							
Insert Size								
	Nominal Cutting Edge Length, mm							
Symbol	A	R	S					
12		12						
13			13.4					
16	16.4	16						

9					
Secondary Cutting Edge Clearance Angle					
D	15°				
G	300				

	10	
С	cutting Edge Pre	paration
Е	Honed	
S	Honed T-land	
Т	T-land	

11						
Hand of Insert						
R	Right-hand					
L	Left-hand					
N	Neutral					

Insert Geometry Designation
Indicates the machining properties or chipformer features Manufacturer-specific

12

							Reco	mmen	led Sta	erting (Speeds	v _c (ft/	min)	
IS0	Material	Workpiece Material	Brinell Hardness	Rockwell Hardness	Tensile Strength		GA4230)						
130	Group	Workpress material	HB	HRC	MPa		f _z (inch)							
						.004	.008	.012						
	PO	Low-Carbon Steels, Long Chipping (C < .25%) Ex. A36, 1008, 1010, 1018, 1108, 1117	<125		<530	920	720	590						
	P1	Low-Carbon Steels, Short Chipping, Free Machining (C < .25%) Ex. 10L18, 1200 Series, 1213, 12L14	<125		<530	820	655	490						
	P2	Medium- and High-Carbon Steels (C > .25%) Ex. 1035, 1045, 10L45, 1080, 1137, 1144, 1525, 1572	<220	<25	>530	720	590	480						
P	Р3	Alloy Steels and Tool Steels (C > .25%) Ex P20, 1300, 2000, 3000, 4000, 5000, 8000, SAE A, D, H, O, S, M, T	<330	<35	600-850	655	560	460						
	P4	High-Strength Alloy Steels and Tool Steels (C > .25%) Ex P20, 1300, 2000, 3000, 4000, 5000, 8000, SAE A, D, H, O, S, M, T	340-450	35-48	850-1400	590	490	390						
	P5	Ferritic, Martensitic and PH Stainless Steels Ex. 13-8 PH, 15-5 PH, 17-4 PH, 400 and 500 Series	<330	<35	600-900	680	575	470						
	P6	High-Strength Ferritic, Martensitic and PH Stainless Steels Ex. 13-8 PH, 15-5 PH, 17-4 PH, 400 and 500 Series	340-450	35-48	900-1350	525	460	390						

ISO		Workpiece Material	Brinell Hardness	Rockwell Hardness	Tensile Strength	Recommended Starting Speeds v _C (ft/min)								
	Material					GA4230 f _z (inch)								
130	Group		HB	HRC	MPa									
						.004	.008	.012						
	M1	Austenitic Stainless Steels Ex. 200 Series, 301, 302, 304, 304L, 309	130-200		<600	640	530	425						
M Stainless Steel	M2	High-Strength Austenitic Stainless and Cast Stainless Steels Ex. 310, 316, 316L, 321, 347, 384	150-230	<25	600-800	575	480	380						
	M3	Duplex Stainless Steels Ex. 323, 329, F55, 2205	135-275	<30	<800	510	425	340						

				Rockwell Hardness	Tensile Strength MPa	Recommended Starting Speeds v _C (ft/min)								
IS0	Material					GA4230 f _z (inch)								
130	Group		HB	HRC										
						.004	.008	.012						
	K1	Gray Cast Iron Ex. Class 20, 25, 30, 35, 40, 45, 50, 55, 60, G1800, G3000, G3500, G4000	120-290	<32	125-500	790	655	490						
K Cast Iron	К2	Ductile Cast Irons (Nodular Irons) and Compacted Graphite Irons (CGI) Ex. 60-40-18, 65-45-12, 80-55-06, SAE J434: D4018, D4512, D5506	130-260	<28	<600	720	590	460						
	К3	High-Strength Ductile Irons and Austempered Ductile Irons (ADI) Ex. ASTM A536: 100-70-03, 120-90-02, SAE J434: D7003	180-350	<43	>600	655	525	430						

				Rockwell Hardness		Recommended Starting Speeds v _C (ft/min)								
IS0	Material		Brinell Hardness		Tensile Strength	GA4230 f _z (inch)								
130	Group		HB	HRC	MPa									
						.004	.008	.012						
	S1	Iron-Based Heat-Resistant Alloys Ex. A286, A608, INCOLOY 800 Series, N-155, Haynes 556, Discaloy	160-260	25-48	500-1200	180	150	115						
S High	S2	Cobalt-Based Heat-Resistant Alloys Ex. Haynes 25 (L605), Haynes 188, Stellite, MAR-M302, MAR-M509	250-450	25-48	1000-1450	150	110	-						
Temp Alloys	S3	Nickel-Based Heat-Resistant Alloys Ex. Astroloy, Hastelloy X, INCONEL 600 and 700 Series, Waspalloy	160-450	<48	600-1700	160	120	-						
	S4	Titanium and Titanium Alloys Ex. Commercially Pure Ti, Ti-SAI-2.5Sn, Ti-6AI-4V, Ti-3AI-8V-6Cr-4Zr-4Mo	300-400	33-48	900-1600	170	130	-						

877.872.0044

TENSILE STRENGTH	HARDNESS					
MPa	Brinell HB	Vickers HV	Rockwell HRC			
530	156	165				
560	166	175				
595	176	185				
625	185	195				
660	195	205				
690	204	215				
720	214	225				
740	219	230				
755	223	235				
770	228	240	20.3			
785	233	245	21.3			
800	238	250	22.2			
820	242	255	23.1			
835	247	260	24.0			
850	252	265	24.8			
865	257	270	25.6			
880	261	275	26.4			
900	266	280	27.1			
915	271	285	27.8			
930	276	290	28.5			
950	280	295	29.2			
965	285	300	29.8			
995	295	310	31.0			
1030	304	320	32.2			
1060	314	330	33.3			
1095	323	340	34.4			
1125	333	350	35.5			
1155	342	360	36.6			
1190	352	370	37.7			
1220	361	380	38.8			
1255	371	390	39.8			
1290	380	400	40.8			
1320	390	410	41.8			
1350	399	420	42.7			
1385	409	430	43.6			
1420	418	440	44.5			
1455	428	450	45.3			

TENSILE STRENGTH	HARDNESS				
MPa	Brinell HB	Vickers HV	Rockwell HRC		
1485	437	460	46.1		
1520	447	470	46.9		
1555	456	480	47.7		
1595	466	490	48.4		
1630	475	500	49.1		
1665	485	510	49.8		
1700	494	520	50.5		
1740	504	530	51.1		
1775	513	540	51.7		
1810	523	550	52.3		
1845	532	560	53.0		
1880	542	570	53.6		
1920	551	580	54.1		
1955	561	590	54.7		
1995	570	600	55.2		
2030	580	610	55.7		
2070	589	620	56.3		
2105	599	630	56.8		
2145	608	640	57.3		
2180	618	650	57.8		
		660	58.3		
		670	58.8		
		680	59.2		
		690	59.7		
		700	60.1		
		720	61.0		
		740	61.8		
		760	62.5		
		780	63.3		
		800	64.0		
		820	64.7		
		840	65.3		
		860	65.9		
		880	66.4		
		900	67.0		
		920	67.5		
		940	68.0		

Metalcutting Safety

Read before using the tools in this catalog!

Projectile and Fragmentation Hazards:

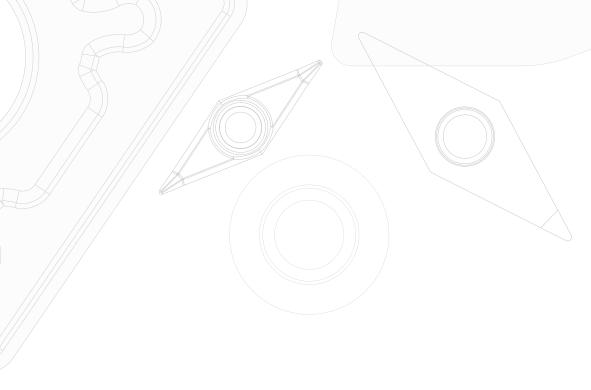
Modern metalcutting operations involve high spindle and cutter speeds and high temperatures and cutting forces. Hot metal chips may fly off the workpiece during metalcutting. Although cutting tools are designed and manufactured to withstand high cutting forces and temperatures, they can sometimes fragment, particularly if they are subjected to over-stress, severe impact, or other abuse. Many variables affect machining operations. It is impossible to cover every specific situation. The technical information included in this catalog and recommendations on machining practices may not apply to your particular operation. As sold and under normal conditions of use, hardmetal products and tools do not present inhalation, ingestion or other chemical hazards. The health hazards relate only to hardmetal powder. Under normal conditions of use, operations involving hardmetal products and tools do not result in the release of hardmetal powder (either in the form of dusts or fumes) and do not present inhalation, ingestion or other chemical hazards.

To avoid injury:

- Always wear appropriate personal protective equipment, including safety goggles, when operating metalcutting machines or working nearby.
- Always make sure all machine guards are in place.

Breathing and Skin Contact Hazards:

Grinding carbide or other advanced cutting tool materials produces dust or mist containing metallic particles.


To avoid injury:

• If grinding, read the applicable Material Safety Data Sheet and consult General Industry Safety and Health Regulations, Part 1910, Title 29 of the Code of Federal Regulations. These safety instructions are general guidelines.

Although we have attempted to provide current and accurate information herein, we make no representations regarding the accuracy or the completeness of the information and assume no liability for any loss, damage, or injury of any kind which may result from or arise out of the use of or reliance on the information by any person.

PRODUCT HANDBOOK

877.872.0044 www.techmet-carbide.com

